
10. Supplementary Material
10.1. Replica Class Mappings

The classes in the Replica dataset differ from those in
the Matterport3D dataset used to train the embodied object
detectors in this work. To enable testing on the Replica
dataset, the following mapping from Replica to Matter-
port3D classes was used:

replica_to_mp3d_mapping = {
’chair’: ’chair’,
’cushion’:’cushion’,
’table’:’table’,
’pillow’:’cushion’,
’cabinet’:’cabinet’,
’shelf’:’shelving’,
’rack’:’chest_of_drawers’,
’sofa’: ’sofa’,
’sink’: ’sink’,
’base-cabinet’:’cabinet’,
’wall-cabinet’:’cabinet’,
’bed’:’bed’,
’comforter’:’bed’,
’desk’: ’table’,
’bathtub’: ’bathtub’,
’blinds’: ’curtain’,
’curtain’: ’curtain’,
’monitor’: ’tv_monitor’,
’nightstand’: ’table’,
’picture’: ’picture’,
’toilet’: ’toilet’,
’tv-screen’: ’tv_monitor’
}

10.2. ScanNet Class Mappings and Scenes

To enable testing on the ScanNet dataset, the following
mapping from ScanNet to Matterport3D classes was used:

scannet_to_mp3d_mapping = {
’bathtub’: ’bathtub’,
’bed’: ’bed’,
’cabinet’: ’cabinet’,
’chair’: ’chair’,
’desk’: ’table’,
’dresser’: ’chest_of_drawers’,
’night stand’: ’table’,
’pillow’: ’cushion’,
’picture’: ’picture’,
’sink’: ’sink’,
’sofa’: ’sofa’,
’table’: ’table’,
’toilet’: ’toilet’,
’tv’: ’tv_monitor’,
’towel’: ’towel’
}

The ten apartment and office scenes used for evalua-
tion are 0000 00, 0040 00, 0050 01, 0131 00, 0207 00,
0264 00, 0377 00, 0377 01, 0549 01, 0663 02.

To enable testing on the ScanNet++ dataset, long-tail
class labels that contain a top 100 class are re-labelled with
the corresponding top 100 class. For example, dining chair

Figure 4. The mobile robot platform used to evaluate embodied
object detection under real-world conditions (left). Birds-eye-view
semantic map of the office environment used to test embodied ob-
ject detection performance (right).

is re-labelled as chair. The following mapping from Scan-
Net++ top 100 classes to Matterport3D classes was then ap-
plied:

scannetpp_to_mp3d_mapping = {
’bathtub’: ’bathtub’,
’bed’: ’bed’,
’cabinet’: ’cabinet’,
’storage cabinet’: ’cabinet’,
’kitchen cabinet’: ’cabinet’,
’chair’: ’chair’,
’office chair’: ’chair’,
’desk’: ’table’,
’dresser’: ’chest_of_drawers’,
’night stand’: ’table’,
’pillow’: ’cushion’,
’cushion’: ’cushion’,
’picture’: ’picture’,
’poster’: ’picture’,
’painting’: ’picture’,
’sink’: ’sink’,
’sofa’: ’sofa’,
’table’: ’table’,
’toilet’: ’toilet’,
’monitor’: ’tv_monitor’,
’tv’: ’tv_monitor’,
’towel’: ’towel’
}

The ten apartment and office scenes used for evaluation
are 1ada7a0617, 21d970d8de, 25f3b7a318, 27dd4da69e,
31a2c91c43, 3864514494, 38d58a7a31, 5748ce6f01,
5942004064, 5ee7c22ba0.

10.3. Visualisation of Spatial Feature Memory

To supplement the discussion in the paper, we provide a
visualisation of the classification and occupancy confidence
implicitly expressed by our spatial feature memory. To visu-
alise classification confidence, we generate class-likelihood
scores su,v ∈ Ra×l×C for each location in spatial memory

Figure 5. Visualisation of the classification entropy Hu,v for each
feature in spatial memory after all 50 episodes have been pro-
cessed in Matterport3D scene YFuZgdQ5vWj 1. For visualisation
purposes, the entropy has been normalised between 0 and 1 with
lighter colours denoting lower entropy and hence higher classifi-
cation confidence.

(u, v) via the following equation:

su,v = softmax
(
∥Mu,v∥2 · zl

)
(13)

where ∥Mu,v∥2 is the L2 normalisation of the memory
feature at location (u, v) and zl is the class-specific embed-
ding from the shared language-image embedding space. We
then calculate the entropy Hu,v ∈ Ra×l of the predicted
class-likelihood scores to quantify the uncertainty at each
location:

Hu,v = −
C∑
i=1

siu,v ln
(
siu,v

)
(14)

Figure 5 visualises the classification entropy Hu,v after
all 50 episodes have been processed in Matterport3D scene
YFuZgdQ5vWj 1.

To visualise the occupancy confidence ou,v ∈ Ra×l, we
calculate the magnitude of the normalised spatial memory
feature |Mu,v| using the following equation:

ou,v =
√
|Mu,v|21 + |Mu,v|22 + · · ·+ |Mu,v|2d2

(15)

where d2 is the length of the normalised spatial mem-
ory feature |Mu,v|. Figure 6 visualises the occupancy con-
fidence ou,v after all 50 episodes have been processed in
Matterport3D scene YFuZgdQ5vWj 1.

10.4. Additional Experiments

10.4.1 Impact of Spatial Resolution

We conduct experiments using the Matterport3D test set to
investigate the influence of spatial resolution on the perfor-
mance of the proposed system. The setting of this parameter

Figure 6. Visualisation of the occupancy confidence ou,v for each
feature in spatial memory after all 50 episodes have been pro-
cessed in Matterport3D scene YFuZgdQ5vWj 1. For visualisation
purposes, the occupancy confidence has been normalised between
0 and 1 with lighter colours denoting higher confidence.

Table 7. Impact of spatial resolution on detection quality and in-
ference time on the Matterport3D test set. Inference is averaged
across all images in the test set. It also does not include geometric
projection, as this is handled by a separate data loading thread.

Resolution (m) AP50 Inference (ms)
0.1× 0.1 41.49 99.11
0.2× 0.2 41.57 71.54
0.5× 0.5 41.31 65.52
1.0× 1.0 40.51 63.83

impacts both the accuracy of the detector and the inference
time (Table 7). Generally, a high resolution spatial memory
will better express the boundaries between different objects,
leading to improved detection quality. However, this comes
at the cost of increased inference time. In particular, we
find that the time to read and write high-dimensional object
features to spatial memory increases exponentially with the
resolution. To balance these conflicting requirements, we
utilise a spatial resolution of 0.2m× 0.2m. This setting re-
tains strong detection performance, with minimal increase
in inference time. Note that the values in Table 7 do not
include geometric projection, as this is handled by a sepa-
rate data loading thread. Thus, the actual inference time of
our system is slightly higher (approximately 100ms) when
deployed on the robot.

10.4.2 Systematic Assessment of Sensor Noise

In addition to our real world experiments, we systemati-
cally explore the resilience if our system to noise in the
geometric projection process (Figure 7). For example, the
Intel RealSense D455 camera guarantees an error less than
0.08m at a distance of 4m, while state-of-the-art SLAM sys-
tems such as ORB-SLAM3 (2) return localisation accuracy

Figure 7. Impact of spatial resolution on the resistance to sen-
sor noise of the proposed system. We vary the resolution of the
spatial feature memory across values of 0.1, 0.2 and 0.5. Then,
Gaussian noise with a standard deviation of 0.1m is added to the
depth and position reading, and 0.01 radians to the robot heading.
The standard deviation is scaled by a factor of 2 and 5 until per-
formance degradation is realised. The dotted line represents the
performance of the fine-tuned DETIC model, which is unaffected
by noise in geometric projection. The remaining lines show the
performance of the spatial feature at different resolutions.

within 0.04m on complex scenes. We add Gaussian noise
with a standard deviation of 0.1m to the depth and posi-
tion readings, and 0.01 radians to the heading. This noise
is scaled until performance degradation is realised. When
using our spatial feature memory under 0.2m of depth and
position noise, only a minor performance drop occurs (Fig-
ure 7). Evidently, by maintaining a low-resolution repre-
sentation of the scene, the impact of noise in the projection
process is attenuated. This is further helped by our reliance
on both image features and spatial memory for performing
detection.

10.4.3 Domain Shift During Exploration

We conduct further experiments exploring the performance
of our system when low quality detections are initially
placed in memory. To simulate this scenario, image qual-
ity is degraded using a gamma correction factor of 0.2 dur-
ing the exploration phase. In this setting, the quality of de-
tections used to establish the memory are significant lower
than those seen at test time. As such, we see a drop in per-
formance relative to when exploration is conducted in good
conditions. However, our spatial feature memory contin-
ues to improve the base detector in this challenging setting
(Table 8). We attribute this to the ability of our approach
to implicitly express where the spatial memory is reliable
(Figure 5, 6). In turn, the detector can learn during training
how to effectively balance the use of image and memory
features, limiting the potential for erroneous detections to
bias the model at future timesteps.

Table 8. Benefit of the spatial feature memory when low quality
detections are initially placed in memory. To simulate this sce-
nario, image quality is degraded using a gamma correction factor
of 0.2 during the exploration phase, while testing images remain
of high quality.

MP3D Replica
Fine-tuned DETIC + Memory 40.62 (+3.17) 54.33 (+1.83)
Fine-tuned DETIC 37.45 52.50

10.5. Hyper-parameter Selection and Sensitivity

10.5.1 Embodied Object Detection

The following hyper-parameters were used to train the em-
bodied object detectors in this work. A batch size of 2
episodes (40 samples) is used to train all methods, as this
is the maximum batch size that fits on a single A100 GPU.
SGD is used as the optimiser for all experiments. When per-
forming vanilla training, a learning rate of 0.0001 is used.
When fine-tuning from DETIC weights, we use a learning
rate of 0.00001. The base model is then fine-tuned end-
to-end with the spatial memory, using a learning rate of
0.00001 for layers in the base detection network and 0.0001
for new layers associated with the spatial memory. All mod-
els are trained for a total of 10000 iterations on the Matter-
port3D train set, with a checkpoint saved every 1000 itera-
tions. To select a model for testing, the checkpoint with the
highest performance on the validation set is selected. Where
an earlier checkpoint reaches within 0.3 mAP of the best
performing model, it is instead used to mitigate overfitting.
Additionally, the following settings are used to implement
the spatial memories:

• Spatial Feature Memory. We pre-compute the spatial
feature memory using the base object detector to speed
up training. A confidence threshold of 0.3 is used to
select detections for updating memory. The weighting
coefficient for fusing memory and image features is set
to 5.

• 3D Semantic Mapping. We closely follow the im-
plementation of (46) to generate the semantic map. A
confidence threshold of 0.5 is used to select confident
detections for updating the map. The weighting coef-
ficient for fusing memory and image features is set to
50.

• Implicit Pixel Memory. We closely follow the pub-
licly available implementation of (3) to build the im-
plicit pixel memory, using a single layer GRU with
hidden dimension 256 to update the spatial memory.
The weighting coefficient used to combine implicit
pixel memory and image features is set to 20.

• MAMBA External Memory. We closely follow the
publicly available implementation of (49) to imple-

ment the MAMBA external memory, changing only
the optimiser, batch size and confidence threshold to
align with the other baselines.

The sensitivity of the spatial feature memory, 3D seman-
tic mapping and implicit pixel memory to key parameters
on the Matterport3D test set are shown in Figure 8. While
there is clear benefit to tuning the weighting coefficients λ,
performance remains strong for each method across a range
of values. We also assess the sensitivity of the spatial fea-
ture memory to the threshold τs used to select confident de-
tections for memory update. Performance remains strong
across a range of values, showing minor variability when
set between 0.2 and 0.5 (Figure 8).

10.5.2 Panoptic Multi-TSDFs

We follow the implementation proposed by (46) to perform
semantic mapping. Where possible, we leave all hyperpa-
rameters unchanged from the original work. However, sev-
eral parameters needed to be defined for integration with our
embodied object detectors. Firstly, we increase the dynamic
voxel size used in the original work from 0.02-0.04mm to
0.03-0.07m to reduce memory consumption. We also im-
plement a threshold τs of 0.5 to select confident detections
for updating the map. This is slightly higher than our im-
plicit object memory (which uses a value of 0.3) as increas-
ing the number of object instances also increases computa-
tional complexity. Specifically, a voxel size of 0.03-0.07m
and threshold of 0.5 enables all Matterport and Replica
scenes to be mapped using 16Gb of RAM.

We also implement an approach to produce dense seg-
mentation masks mt

d from the sparse masks mt
s that result

from re-projecting voxels into the image frame. To do so,
we apply a mean filter to each segmentation mask, which is
commonly used to blur or remove noise from an image. The
dense segmentation masks mt

d are generated simply by ap-
plying a threshold τm to the blurred mask. The kernel size
and threshold τm need to be defined based on the voxel size
of the map. To explore this relationship, we use the simple
scenario of two adjacent voxels of size v that are situated a
distance of e from the camera. If the center of each voxel is
projected into the camera frame, the pixel distance between
the resulting points can be calculate via:

dp =
w

hfov
∗ arctan

(v

2e

)
(16)

where dp is the pixel distance, w is the image width in
pixels, and hfov is the horizontal field of view of the cam-
era in radians. For voxels of size 0.05m that are 1m from
the camera, an image width on 640 pixels and a horizontal
field of view of π

2 , this returns a distance of approximately
10 pixels. Across an entire image, this corresponds to 1 in

Figure 8. Sensitivity of proposed external memories to key hyper-
parameters on the Matterport3D test set. In each test, the isolated
parameter is swept while keeping all other aspects of implemen-
tation constant and fine-tuned DETIC is used as the base model.
The dotted line represents the performance of the fine-tuned DE-
TIC model.

100 pixels being associated with a voxel. To associate un-
labelled pixels to points of this sparsity, at least one point
needs to fall within the range of the mean kernel. Thus,
a minimum mean kernel size of 10×10 and threshold τm
of 0.01 must be used. However, a larger kernel and lower
threshold should be used to deal with misclassified voxels,
larger voxel sizes and closer objects. The cost of a larger
kernel and lower threshold is a reduction in precision at the
edge of the segmentation mask. We use a mean kernel size
of 50×50 and a threshold τm of 0.003 for all experiments
to achieve a trade-off between these considerations.

