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1. Additional Experiments
1.1. Impact of Different Backbone Architectures

To demonstrate the versatility of LiGAR and investigate
its performance with more advanced architectures, we con-
ducted experiments using three different backbone networks:
ResNet-18, ViT-B/16, and ViT-B/8. This comparison aims
to show LiGAR’s adaptability to different feature extractors
and analyze the impact of more sophisticated architectures
on its performance.

1.1.1 Experimental Setup

We evaluated LiGAR’s performance on three datasets:
JRDB-PAR [2], Volleyball [4], and NBA [6]. The back-
bone architectures used are ResNet-18 [3], a conventional
CNN architecture; ViT-B/16 [1], a Vision Transformer with
patch size 16x16; and ViT-B/8 [1], a Vision Transformer
with patch size 8x8 offering higher resolution. All models
were trained using the same hyperparameters and data aug-
mentation techniques to ensure a fair comparison. We used
the standard evaluation metrics for each dataset: F1-score for
JRDB-PAR, Mean per-Class Accuracy (MCA) and Merged
MCA (M-MCA) for Volleyball, and MCA and Mean Per
Class Accuracy (MPCA) for NBA.

1.1.2 Performance Comparison Across Datasets

Table 1 presents the performance of LiGAR with different
backbone architectures across the three datasets.

Table 1. Performance comparison of LiGAR with different back-
bones

Backbone JRDB-PAR Volleyball NBA
(F1) (MCA/M-MCA) (MCA/MPCA)

ResNet-18 [3] 59.3 93.1 / 95.4 87.4 / 79.4
ViT-B/16 [1] 61.5 94.2 / 96.1 88.9 / 81.2
ViT-B/8 [1] 63.2 95.0 / 96.8 90.1 / 82.7

The results demonstrate several key findings. ViT-B/8
consistently outperforms the other backbones across all
datasets, with the improvement being particularly notable on

the complex JRDB-PAR dataset, showing a 3.9 percentage
point increase in F1-score compared to ResNet-18. The su-
perior performance of ViT-B/8 over ViT-B/16 highlights the
importance of higher resolution feature maps for group ac-
tivity recognition, as the smaller patch size allows for more
fine-grained spatial information to be captured. LiGAR’s
ability to benefit from more advanced backbone architec-
tures demonstrates its flexibility and potential for future
improvements as new architectures emerge. Interestingly,
the performance gap between backbones is more pronounced
on the JRDB-PAR dataset, suggesting that more complex
scenes benefit more from advanced architectures.

1.1.3 Computational Requirements Analysis

While ViT-B/8 provides the best performance, it’s important
to note that it also has the highest computational cost. The
choice of backbone may depend on the specific application
requirements and available computational resources. To
illustrate this trade-off, Table 2 provides a comparison of the
computational requirements for each backbone architecture.

Table 2. Computational requirements of different backbones

Backbone Parameters FLOPs Inference Time
(M) (G) (ms)

ResNet-18 [3] 11.7 1.8 80
ViT-B/16 [1] 86.6 55.5 45
ViT-B/8 [1] 80.2 17.6 15

As expected, the ViT architectures, particularly ViT-B/8,
have significantly higher computational requirements com-
pared to ResNet-18. This trade-off between performance and
computational cost should be considered when deploying
LiGAR in real-world applications.

1.1.4 Discussion

This experiment demonstrates that LiGAR can effectively
leverage the strengths of different backbone architectures,
with Vision Transformers providing significant performance
gains. The results suggest that future work could explore
even more advanced backbones or hybrid architectures to
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further improve LiGAR’s performance, while also consid-
ering the computational requirements for practical deploy-
ments. The flexibility of LiGAR in adapting to different
backbone architectures highlights its potential for continued
improvement as new architectures are developed in the field
of computer vision.

2. Additional Ablation Studies
In the main paper, we presented comprehensive ablation

studies on the JRDB-PAR dataset to evaluate the effective-
ness of LiGAR’s design choices and components. To provide
a fair analysis across all datasets and demonstrate the gener-
alizability of our findings, we extend these experiments to
the Volleyball and NBA datasets. These additional studies
aim to quantify the impact of different modality combina-
tions, the contribution of each key component, and the effect
of hierarchical processing levels on LiGAR’s performance
across diverse group activity recognition scenarios.

2.1. Impact of Modality Combinations

We first investigated the influence of different modality
combinations on LiGAR’s performance for the Volleyball
and NBA datasets. Table 3 presents these results alongside
the JRDB-PAR results from the main paper for comparison.

Table 3. Impact of modality combinations across datasets

Modalities JRDB-PAR* Volleyball NBA
Fg MCA M-MCA MCA MPCA

RGB only 51.2 74.8 76.1 62.7 57.1
RGB + Text 53.8 82.4 82.9 70.2 68.4
RGB + LiDAR 56.5 87.1 88.3 79.5 73.2
RGB + LiDAR + Text 59.3 93.1 95.4 87.4 79.4
*Results from the main paper

2.2. Contribution of LiGAR Components

Next, we examined the individual contribution of each key
component in LiGAR for the Volleyball and NBA datasets.
Table 4 shows these results alongside the JRDB-PAR results
from the main paper.

Table 4. Ablation study on LiGAR components across datasets

Model Variant JRDB-PAR* Volleyball NBA
Fg MCA M-MCA MCA MPCA

LiGAR w/o MLT 55.4 80.8 82.6 70.5 64.9
LiGAR w/o CMGA 57.1 88.2 90.1 80.2 76.6
LiGAR w/o AFM 58.3 86.3 89.6 79.7 74.1
Full LiGAR 59.3 93.1 95.4 87.4 79.4
*Results from the main paper

2.3. Impact of Hierarchical Processing

Lastly, we evaluated the effect of different hierarchical
processing levels on LiGAR’s performance for the Volleyball
and NBA datasets. Table 5 presents these results alongside
the JRDB-PAR results from the main paper.

Table 5. Impact of different hierarchical levels across datasets

Hierarchical Levels JRDB-PAR* Volleyball NBA
Fg MCA M-MCA MCA MPCA

Single-level 54.6 70.2 72.3 65.2 58.3
Two-level 57.7 82.3 86.2 80.4 71.6
Three-level (Full LiGAR) 59.3 93.1 95.4 87.4 79.4
*Results from the main paper

2.4. Analysis

The extended ablation studies on the Volleyball and NBA
datasets corroborate and strengthen the findings from the
JRDB-PAR dataset presented in the main paper. Across all
three datasets, we observe consistent trends that validate the
effectiveness of LiGAR’s design choices. The impact of
modality combinations, as shown in Tab. 3, demonstrates the
complementary nature of RGB, LiDAR, and textual infor-
mation, with the full multi-modal configuration consistently
achieving the best performance. Improvements range from
18.3 to 24.7 percentage points over the RGB-only baseline
across datasets, underscoring the importance of integrating
diverse data sources for robust group activity recognition.

The component-wise ablation, as shown in Tab. 4, reveals
the crucial role of each LiGAR module across all datasets.
The Multi-Scale LiDAR Transformer (MLT) proves to be
the most critical component, with its removal causing the
largest performance drop in all cases. This highlights the
significance of multi-scale LiDAR processing in capturing
complex spatial relationships, even in scenarios where Li-
DAR data is not directly available during inference, such
as in the Volleyball and NBA datasets. The Cross-Modal
Guided Attention (CMGA) and Adaptive Fusion Module
(AFM) also contribute substantially to the model’s perfor-
mance, emphasizing the importance of effective cross-modal
feature alignment and dynamic modality fusion.

The hierarchical processing experiment, as shown
in Tab. 5, demonstrates the benefits of LiGAR’s multi-level
approach across all datasets. The three-level architecture
consistently outperforms single and two-level variants, with
performance gains ranging from 12.9 to 22.2 percentage
points compared to the single-level model. This suggests
that the hierarchical approach enables LiGAR to capture
group activities at various granularities, from individual ac-
tions to overall scene dynamics, regardless of the specific
activity domain.

Interestingly, while the performance improvements fol-
low similar trends across datasets, they are more pronounced
on the JRDB-PAR dataset compared to Volleyball and NBA.
This could be attributed to the greater complexity and di-
versity of activities in the JRDB-PAR dataset, which may
benefit more from LiGAR’s sophisticated multi-modal and
multi-scale processing approach. However, the consistent
trends across all three datasets validate the generalizability
of LiGAR’s design principles across different group activity



recognition scenarios.
In conclusion, these extended ablation studies provide

strong evidence for the effectiveness and generalizability
of LiGAR’s multi-modal, multi-scale, and hierarchical ap-
proach to group activity recognition. The results demonstrate
that each component and design choice contributes mean-
ingfully to the model’s performance across diverse datasets,
with their combination yielding state-of-the-art results in
various group activity recognition contexts.

3. More Visualizations
Figure 1 illustrates t-SNE visualizations of feature repre-

sentations learned by LiGAR across different modality com-
binations for the Volleyball, NBA, and JRDB-PAR datasets.
The progression from RGB-only to the full multi-modal
configuration (RGB + LiDAR + Text) shows a clear im-
provement in feature discrimination and cluster formation
across all datasets.

In the RGB-only scenario, classes are largely intermixed,
indicating poor separability based solely on visual features.
Adding textual information (RGB + Text) begins to show
some improvement in cluster formation. The incorporation
of LiDAR data (RGB + LiDAR) leads to a significant leap
in feature discrimination, with distinct clusters starting to
form. The full multi-modal configuration achieves the most
distinct and compact clusters across all datasets, particularly
evident in the complex JRDB-PAR scenario.

This visual analysis corroborates our quantitative results,
demonstrating LiGAR’s ability to leverage complementary
information from multiple modalities effectively. The con-
sistent improvement pattern across datasets underscores the
generalizability and effectiveness of LiGAR’s multi-modal
approach in capturing the nuanced dynamics of group in-
teractions, especially in complex, real-world scenarios with
varied activities.
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Figure 1. t-SNE [5] visualization of video representation on the Volleyball [4], NBA [6] and JRDB-PAR [2] datasets learned by LiGAR
model for different combinations of modalities. Best viewed in zoom and color.


