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A. Alternative Modality Queries to ContextIQ

The flexibility of our system allows us to effortlessly per-
form queries across different modalities, including video,
audio, and image, ensuring any-to-any search capabilities.

Image Query: The process begins by encoding the in-
put query image using the vision encoder of the vision-text
model fy,, resulting in an image embedding. This embed-
ding is then compared against the vision embeddings of all
available content {F? : ¢ = 1,2, ..., N} using cosine sim-
ilarity. The system retrieves and ranks content based on
these similarity scores.

Video Query: For video queries, the system first ex-
tracts frame-level embeddings from the sampled frames of
the query video using the vision encoder of the vision-text
model fg,. These frame-level embeddings are then ag-
gregated using the previously defined aggregation function
A, to generate a single video embedding. This video em-
bedding is compared directly with the vision embedding
database {F} : ¢ = 1,2,...,N} using cosine similarity.
The content is then ranked according to similarity, with the
most relevant videos appearing at the top of the results.

Audio Query: The process for audio queries begins by
segmenting the query audio into a fixed number of seg-
ments. Each segment is encoded using the audio encoder of
the audio-text model gg,. These segment-level encodings
are then aggregated using the previously defined aggrega-
tion function A, to form a single audio embedding. This
aggregated embedding is compared against the audio em-
beddings database {F{ : i = 1,2, ..., N} using cosine sim-
ilarity. The results are then ranked based on these similarity
scores.

B. Video Action Recognition
B.1. Simplifying Kinetics 710 classes

Reducing Kinetics 710 [2,3,6] classes to minimize inter-
class confusion can be done by either discarding irrelevant
classes or combining similar ones. A hierarchical approach
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to combining Kinetics classes was explored in [8] using a
clustering method. However, this approach only provides
examples rather than hierarchical clustering for the entire
Kinetics dataset. In our ContextIQ system, we reduced the
number of classes by collecting various signals and manu-
ally determining which classes to discard or combine. As
a result, the number of classes was reduced from 710 to
185. The result is captured in this sheet (as referred in
the following paragraphs) present in our GitHub repository
https://github.com/AnokiAl/ContextIQ-Paper/. The signals
used were:

1. Relevance to contextual advertiser: Some classes,
like “stretching arm” or “shuffling feet” may be too
mundane, while others, like “’playing oboe” or “clam
digging,” are too niche for a broad audience targeting.
Using GPT-4, we identified and marked about 50%
of classes as irrelevant for audience targeting (high-
lighted in red in the attached sheet). Examples of
discarded classes include “Playing oboe” (niche in-
strument with limited audience), ”Pole vault” (niche
sport), and “’Stretching leg” (too general for segmenta-
tion).

GPT4 Prompt:

I have a list of 710 actions. Create a downloadable
sheet with three columns, 710 actions, Discard, Rea-
son. The discard should be Yes, but only if it seems less
useful for detecting an action. If Discard is yes, also
mention the reason (1-2 lines). I want to discard about
50% of the actions to keep the most useful half. An ac-
tion is less useful if it does not seem helpful for creating
audience segments for ad targeting. E.g, pinching ac-
tion does not seem useful to target. Do not make any
action class. Use the 710 as it is.

[[Paste the list of 710 actions]]

2. Groupings and correlated classes: Many classes in
the Kinetics 710 set have high overlap, and their occur-
rence is highly correlated. For example, there are three
separate classes for playing guitar, strumming guitar,
and tapping guitar, which the model finds difficult to
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differentiate, leading to higher inter-class confusion.
To address this, we used two approaches: one extends
the existing Kinetics 400 [6] groupings to 710 classes,
and the other examines the top correlated classes dur-
ing prediction.

K400 Groupings: The K400 set [6] provided group-
ings of the 400 classes into 37 groups. However,
these groupings were not extended to the additional
300 classes in the K710 set. For these additional 300
classes, we inferred their groupings by finding their
text similarity with the 37 groups using the text en-
coder hy, used in the main paper and tagging the class
to the most similar group. These classes are marked
with a double asterisk in the K400 grouping column in
the sheet.

Top-3 correlated classes: The VideoMAE2 model
[11] generates logits for 710 classes during inference.
We build a co-occurrence matrix by counting every
pair of classes in the Top-10 logit scores, then compute
the correlation matrix. This process is applied to both
the Kinetics validation set (50,000 videos) and our in-
ternal movie/TV clip set (Sec. 5.2 in the main paper).
For instance, classes like dunking, dribbling, shooting,
and playing basketball are highly correlated, allowing
us to merge them into a single class, such as playing
basketball.

. Accuracy on the K710 validation set: Some classes
perform poorly on the simpler Kinetics validation set
(likely the same data distribution they were trained on),
making them less likely to perform well on our movie
clip dataset. We calculate the Top-1 and Top-3 accu-
racy for each class on the Kinetics set and highlight
those in the bottom 25th percentile in the sheet. For
instance, photobombing has a 38.8% Top-1 and 51%
Top-3 accuracy, making it a candidate for discarding
to reduce false positives and inter-class confusion.

4. Class occurrence ranking: Kinetics includes many
classes that rarely occur in the wild, such as wood
burning (art), stacking die, and wrestling alligator. In
our large, diverse internal dataset, we found that 90%
of the Top-3 search results come from only 218 classes
1. In the attached sheet, we list the occurrence count
rank of each class (from 1 to 710) and highlight those
beyond the top 218.

Using the above four signals, the 710 classes were man-

ually screened and reduced to 185 classes:

¢ 182 classes were discarded.

¢ 418 classes were combined into 89 classes (see Tab. 1
for some of the obtained combined classes).
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Figure 1. Cummulative Percentage Plot of Top-3 predicted actions
on the internal set

Table 1. Few examples of obtained combined classes

Combined class Actions belonging to the class

playing cards playing poker, shuffling cards, card
stacking, card throwing, dealing
cards, playing blackjack

drinking alcohol uncorking champagne, bartending,
drinking beer, drinking shots, tast-
ing beer, playing beer pong, pour-
ing beer, tasting wine, pouring
wine, opening bottle (not wine),
opening wine bottle

riding animal riding camel, riding elephant, rid-
ing mule, riding or walking with
horse

playing board game | playing monopoly, playing check-
ers, playing dominoes, playing
mahjong, playing scrabble
cleaning floor cleaning floor, mopping floor,
sweeping floor, brushing floor,
vacuuming floor, sanding floor

¢ 96 classes were retained.

Combining classes involves a trade-off between losing
specificity and improving average precision @ K and pre-
diction confidence. For instance, while predicting a broader
class such as “drinking alcohol” (refer to row 2 of Table 1)
can yield higher precision, it sacrifices the ability to differ-
entiate between specific types like wine and beer.

C. Emotion Recognition

Text-based Emotion Recognition. We use a pre-trained
Emoberta-Large [7] model, which is trained on the MELD
[10] and IEMOCAP [1] datasets, for text-based emotion
recognition as it is a speaker-aware model and shows bet-
ter performance empirically on movie scene subtitles.



Leveraging Visual and Audio Cues for Emotion Recog-
nition. The text-based models work only when there is
enough text for the model to make a prediction. More-
over, it is difficult to find subtitles for some content, but
still, we need to predict emotions in them for better retrieval
and brand safe filtering. Since we already use the vision-
text model and audio-text models for different parts of the
ContextIQ system, we use these models to get some extra
signals for predicting emotion. For example, we tagged
the emotion joy with text queries like people smiling and
people dancing, and assigned the emotion joy to all videos
retrieved through the video (vision) modality using these
queries. Concretely, we associate textual concepts that can
be linked to different emotions and then find the scenes that
have high video embedding similarity with the emotional
text concept. Assume @Q; = {t : e} to be the text concept
dictionary which contains strings ¢ associated with different
emotions e. Then, for a particular video scene x, we say
that it is associated to an emotion e if,

fo (@) f3,(t) > 7o (1)

where fy, and fg; are the video and text encoders, re-
spectively, of the vision-text model [9], and T, is a prede-
fined threshold for the concept-emotion pair ¢ : e.

Empirical results show that textual emotion concepts
work well only for joy emotion. For other emotions, either
it is difficult to find emotional text concepts which are rel-
evant to that emotion, or the text concept associated to the
emotion is not well represented by the vision-text model.

Similar to visual concepts, we associate audio concepts
to different emotions given by (), = a : e, which contains
audio files a and corresponding emotion e associated with
that audio file. Then for a particular video scene x, we say
that it is associated to an emotion e if,

96 (‘ra) 96, (a’) > Te ()

where gy, is the audio encoder of CLAP [13], z, is the
audio for the given video and 7. is a predefined threshold
for the concept-emotion pair a : e. Note that we do not
use the text encoder of CLAP because text-audio matching
did not result into as good results as audio-audio matching.
We have only linked audio emotion concepts to sad emotion
because the rest of the emotions do not show good results
empirically.

D. Hate Speech Detection

Aggregation Strategy: To combine predictions from the
BERT model, the scores for the Hate Speech and Offensive
classes are summed. This aggregated score is then com-
pared against a threshold of § = 0.7. The final prediction
is obtained by applying a logical OR operation between the

thresholded BERT prediction and the predictions from the

LLM to boost recall.

Prompting Strategies: We implement various prompt-
ing techniques to enhance the predictive performance of the
LLM [5].

1. Few-Shot Learning: A few examples are provided to
the model to establish task context, improving its ability
to accurately identify hate speech. Specifically we use
three examples for the same.

2. Definition of Hate Speech: A precise definition of hate
speech is included in the prompt to ensure consistent de-
tection aligned with the dataset annotations. We use the
following definition of hate speech : Language that dis-
parages a person or group on the basis of protected char-
acteristics like race, gender, and cultural identity.

3. Structured JSON Output: The model is instructed to
return its response in JSON format, enabling easy pars-
ing and seamless integration with the contextIQ system.

4. Chain of Thought Reasoning: The model is prompted
to generate intermediate reasoning steps before deter-
mining whether content qualifies as hate speech, enhanc-
ing prediction accuracy. [12]

Various analyses were performed to evaluate the effec-
tiveness of these strategies by using a combination of
them for detection. Table 3 presents the results of these
analyses. The results demonstrate that incorporating
all the prompting strategies enhances detection perfor-
mance, leading to improvements in accuracy, precision,
and F1 score.

Validation Data and Results: We conducted validation
using two datasets: an internal dataset and the implicit-hate
dataset [4]. For implicit-hate, we sampled 250 examples
each of Explicit Hate Speech, Implicit Hate Speech, and
Normal Speech to ensure a balanced evaluation across dif-
ferent types of speech. In contrast, the internal dataset con-
sisted of 11,645 examples, which, after applying a profanity
filter, was reduced to 10,645. Given the unbalanced dis-
tribution of hate speech versus normal speech on internal
dataset, calculating recall was challenging. As a result, we
only focused on the positive predictions generated by each
model.

On the internal dataset, the BERT model identified 397
out of 10,645 examples (3.7%) as positive, while the LLM
predicted 509 examples (4.8%) as positive. To assess these
predictions, we randomly sampled 40 examples from each
set of positive predictions, which were reviewed by two in-
dependent curators, given the subjective nature of the task.
While precision varied significantly between curators ow-
ing to the subjective nature of the task, the LLM consis-
tently outperformed the BERT model, with an average delta
of 7.5%.



Table 2. Classification metrics for LLM, BERT and Ensemble Model

Explicit Hate vs Normal Speech Implicit Hate vs Normal Speech
. Ensemble Ensemble Ensemble Ensemble
Metric | LLM - BERT R 9=0.7) (aND,0=02) | ™™ BERT oRr 9-07) (OR 6=02)
Accuracy | 839  77.7 81.5 85.3 753 634 73 73.2
Precision | 789  75.9 74.5 82 752 66.8 70.7 76.9
Recall 923  8l1.1 95.1 90.2 749 524 78.1 66
F1 Score | 85.1 78.4 83.5 85.9 75.1  58.8 74.2 71
Table 3. Differential Analysis for different prompting strategies
Explicit Hate vs Normal Speech Implicit Hate vs Normal Speech
Reasoning Yes No Yes Yes Yes | Yes No Yes Yes Yes
Definition of Hate Speech | Yes Yes Yes Yes No | Yes Yes Yes Yes No
Number of Examples 3 3 1 0 3 3 3 1 0 3
Recall 946 972 952 935 949|765 856 748 778 755
Precision 739 658 723 702 71.0|703 629 673 663 674
Accuracy 808 734 794 771 787|719 676 692 693 69.5
F1 Score 83.0 784 822 802 812|733 725 708 71.6 712
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