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Appendix A provides implementation details about the
training of the edge-specialized Gaussian Splatting. Ap-
pendix B shows qualitative results over the scenes from the
Replica [7] dataset used by the authors of EMAP [4] and
three scenes from the Tanks and Temples dataset [3]. Ap-
pendix C discusses some limitations and failure cases of our
method, pointing to relevant future work.

A. Implementation details

Initialization. Gaussian Position: For scenes from the
DTU [1], Replica [7] and Tanks and Temples [3] datasets,
we use the SfM [6] points as initialization. Note that
random point initialization also produces reasonable, but
slightly worse results. For ABC-NEF [9], we initialize our
method with Gaussians centered at 10000 points randomly
sampled in a unit cube. This is because the dataset com-
prises texture-less objects for which Structure-from-Motion
(SfM) [6] generates extremely sparse or no point recon-
struction at all. Gaussian Scale: We use a constant initial
value of 0.004 for all datasets. However, a point-dependent
value based on the complexity of the neighboring region
may be more robust. Gaussian Opacity: We use a constant
initial value of 0.08 for all datasets. Gaussian Orientation:
Random unit quaternions are used as initial values for all
Gaussians.
Training. We train the model for 500 epochs. For the first
30 epochs, we only train the position parameters so that the
scale and the orientation of the Gaussian do not compensate
for its incorrect position during rendering. Thus the train-
ing constrains the Gaussian’s position, i.e., its mean, to lie
on 3D edges. We cull the Gaussians based on opacity and
duplicate the ones with high positional gradients at regular
intervals as in the original work [2]. The learning rates of
different parameters are as follows. Position: starting with
1e−3, scaled with a factor of 0.75 every 10 epochs, 5 times.
Scale: 2e−4 constant. Opacity: 3e−2 constant. Orientation:
1e−3 constant.

We use k = 4 as the number of nearest neighbors for

computing Lorient defined in Eq.(4) of the main paper. The
weights of the loss function in Eq.(6) of the main paper
are λ1 = 0.1 and λ2 = 0.1 for object level scenes from
ABC-NEF [9] and DTU [1], while for larger scenes we use
smaller values of λ1 = 0.01 and λ2 = 0.01. The geometric
regularization assumes that the Gaussians are already posi-
tioned close to the edges, therefore we start applying this
regularization at epoch 300. Note that the computation of
nearest neighbors, required for the geometric regularization
is computationally intensive and we observe that it is suffi-
cient to only apply this regularization once in every 10 steps
of the training process.
Clustering During clustering, the alignment threshold is
θ = 0.8 on ABC-NEF [9], which have clean straight lines,
and θ = 0.6 on DTU [1] to account for the higher curva-
ture of the shapes. During the parametric edge fitting, we
fit a curve whenever the curve residual error is δ = 0.5
lower than the line residual error. For objects from the DTU
dataset [1], due to the prior knowledge that the objects have
more curves than lines, a larger δ = 1 is used.

For any further clarifications, please refer to the code re-
leased at https://github.com/kunalchelani/EdgeGaussians.

B. Additional Qualitative Results

Fig. 1 to 3 show the results for the scenes room 0,
room 1, room 2 of the Replica [7] dataset. The results show
that our method produces edges with a higher completeness
than EMAP [4]. Also, EMAP [4] predicts clusters of du-
plicate edges close to the ground-truth edge, which is not
a desirable result as it makes the reconstruction less sharp.
Overall, our method produces clean single edges that are
more complete. However, in some cases, EMAP [4] pro-
duces geometrically accurate lines, which our method cap-
tures as incomplete curves. Fig. 2 shows one such example.
Although this can be partially addressed by adjusting the
parameter δ involved in the model selection when fitting a
line or a curve, this could be seen as a current limitation of
our method.
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C. Limitations and Failure Cases
Fine structures and geometric regularization. As briefly
described in the main paper, the method is limited by the
noise in the supervisory signal of the 2D edge maps. In
many cases the fine structures in such edge maps [5, 8]
are not discernible, leading to incorrectly positioned edge
points. Geometric regularization applied to noisy edge
points can lead the Gaussians’ to form short local curves
to satisfy the alignment with their nearest neighbors. Ex-
amples of such cases can be seen in Fig. 5.
Clustering and edge fitting. Further, the clustering algo-
rithm exhibits limitations when applied to larger scenes with
complex structures. Fig. 4 shows examples from the Tanks
and Temples dataset [3] where the oriented edge points
(red), i.e., the 3D Gaussians, better cover the ground-truth
3D edges than the paramtric edges (black). One explanation
is that the graph traversal based clustering removes several
correct edge components close to the true scene structure
while including several incorrect edges. Instead of relying
only on local geometric heuristics, defining a prior on which
parts of the scene are more likely to hold 3D edge could im-
prove the method’s robustness.
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Figure 1. Replica [7] room 0 : Qualitative result showing edges produced by our method and EMAP [4]. In general it can be observed
that EMAP [4] has several duplicate / dense sets of edges close to ground-truth edges whereas our method produces clean single edges.
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Figure 2. Replica [7] room 1 : Qualitative result showing three different views of edges produced by our method and EMAP [4]. In general
it can be observed that EMAP [4] has several duplicate / dense sets of edges close to ground-truth edges, while our method produces clean
single edges. However, EMAP [4] produces more accurate lines for some geometric edges, for example, on the window pane.
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Figure 3. Replica [7] room 2 : Qualitative result showing edges produced by our method and EMAP [4]. In general it can be observed
that EMAP [4] has several duplicate / dense sets of edges close to ground-truth edges, while our method produces clean single edges.
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Figure 4. Tanks and Temples [3]: Qualitative result showing edges produced by our method on three scenes from the tanks and temples
dataset. Supervisory signal (Left), edge points represented as a small line segment centered at the mean of the optimized 3D Gaussians and
oriented towards their principal directions (Middle) and the points sampled on the parametric 3D edges estimated (Right). Note that the
estimated Gaussians faithfully represent the scene but the clustering and edge fitting process have room for improvement as many correct
edges are missed and spurious ones are created in this process.



Figure 5. Failure cases : Scans 00009685, 00002412 and 00003884 (left to right) on the ABC-NEF [9]. The edges predicted by our method
are shown in black and the ground-truth ones in green. These examples are challenging because they show extremely thin structures: the
projection on two distinct parallel and close 3D edges can get projected into a single edge in several views of the supervisory 2D edge
maps [5, 8]. Another example where the proposed method is incomplete (right) is when the object has 3D edges inside the structure that
are not detected by the 2D edge detectors. Then, there is no supervisory signal for those 3D edges.
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