
Adaptive and Temporally Consistent Gaussian Surfels for Multi-view Dynamic
Reconstruction

–Supplementary Material–

Decai Chen1,2 Brianne Oberson1,3 Ingo Feldmann1

Oliver Schreer1 Anna Hilsmann1 Peter Eisert1,2
1Fraunhofer HHI 2Humboldt University of Berlin 3Technical University of Berlin

{first}.{last}@hhi.fraunhofer.de

1. Implementation Details

In all our experiments, training is conducted on a GPU
server equipped with an AMD EPYC 9654 CPU and an
NVIDIA RTX 6000 Ada GPU, utilizing the Adam opti-
mizer [4], PyTorch 2.3.1 [5], and CUDA 11.8. For each
dynamic scene, we begin with static reconstruction using
Gaussian surfels [2] for the first frame, obtaining a surfel-
based Gaussian representation from a sparse point cloud
generated by COLMAP [6]. For each subsequent frame, we
initialize the scene from the previous frame and apply our
coarse-to-fine training approach, with 200 iterations for the
coarse stage and 800 iterations for the fine stage. Training
takes 31.7 seconds per frame on the NHR dataset [8] and
37.5 seconds per frame on the DNA-Rendering dataset [1].

In the coarse stage, the learning rate for the Neural Trans-
formation Cache is set to 0.002. In the fine stage, our uni-
fied, adaptive densification of Gaussians starts at iteration
230 and ends at iteration 600, with a densification inter-
val of 30 iterations. Additionally, the Gaussian opacity re-
set interval is set to 200 iterations. We set the spherical
harmonics degree to 1 for the NHR dataset and 2 for the
DNA-Rendering dataset, as the latter contains more non-
Lambertian objects. All other hyperparameters are kept
consistent with 3DGS [3].

For the loss function, we set λo to 0.01 and λm to 0.1.
Additionally, we gradually increase λm from 0.01 to 0.11,
while linearly decaying λt from 0.04 to 0.02.

2. Additional Dataset Details

For the DNA-Rendering dataset [1], we evaluate our
method on five widely used sequences: 0008 01, 0012 11,
0013 01, 0013 03, and 0013 09, with images downsampled
by a factor of 2 and cropped to focus on the foreground re-
gion. Following 4K4D [9], we select views 11, 25, 37, and
57 as testing views, with the remaining views used for train-
ing. For all scenes in the NHR dataset [8], we reserve views

18, 28, 37, and 46 for evaluation, while the rest serve as the
training set.

3. Additional Ablation Study
In this section, we quantitatively evaluate the effective-

ness of our method in enhancing temporal consistency.
Specifically, we render dynamic mesh sequences from a
fixed testing view and calculate SSIM, PSNR, and LPIPS
between consecutive frames. Temporal consistency is then
measured by averaging these metrics across the entire se-
quence, with higher scores indicating greater similarity be-
tween consecutive frames. Since the scene movement re-
mains consistent for the same rendering view, more simi-
lar images across frames suggest higher temporal consis-
tency. As shown in Tab. 1, our curvature-based temporal
consistency (TC) module significantly improves smooth-
ness across frames. Additionally, a qualitative evaluation
of temporal consistency is provided in the supplementary
video.

Method PSNR↑ SSIM↑ LPIPS↓
w/o GD + w/o TC 29.268 0.946 0.0145
w/o GD 29.569 0.9507 0.0129
w/o TC 29.271 0.9469 0.0145
Ours Full 29.589 0.9514 0.0129

Table 1. Ablation study on the temporal consistency of rendered
mesh videos on the NHR dataset.

4. More Results
Free-Viewpoint Rendering. In Tab. 2 and Tab. 3, we
provide a detailed per-scene quantitative comparison of
our rendering results against various baselines on both the
DNA-Rendering and NHR datasets. Additionally, as shown
in Fig. 1, our method consistently achieves photo-realistic
rendering with fine-grained details.
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Surface Reconstruction. We include further qualitative
comparisons of dynamic surface geometry on the DNA-
Rendering and NHR datasets in Fig. 2. Our method recon-
structs high-quality surface meshes across various complex
dynamic scenes.

5. Supplementary Video
The supplementary video includes the following:

• Additional ablation study on the impact of temporal
consistency loss on dynamic surface meshes.

• A comparison between our method and NeuS2 [7] on
dynamic surface meshes.

• Additional results showcasing free-viewpoint render-
ings of both color images and surface meshes.

6. Potential Societal Impact
While AT-GS advances dynamic surface reconstruction

and novel view synthesis, its deployment carries potential
negative societal impacts. When combined with genera-
tive technology, it could be misused to create hyper-realistic
deepfakes or synthetic media, leading to disinformation,
privacy breaches, and security risks. The high-fidelity re-
construction capabilities may also be exploited for intrusive
surveillance, further raising privacy concerns. Additionally,
although more efficient than some methods, the computa-
tional demands of AT-GS could contribute to environmen-
tal impact due to energy consumption, especially at scale. It
is essential for researchers to remain vigilant and prioritize
ethical use, alongside exploring safeguards to mitigate these
risks.
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Figure 1. Additional qualitative comparison of novel view synthesis on the DNA-Rendering and NHR datasets.
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Figure 2. Additional comparison of surface reconstruction on the DNA-Rendering and NHR datasets.



Type Method 0008 01 0012 11 0013 01

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Holistic 4K4D 31.36 0.974 0.047 35.81 0.990 0.018 34.52 0.987 0.021
STG 24.08 0.944 0.068 33.55 0.986 0.023 25.47 0.957 0.047

Incremental
NeuS2 30.24 0.980 0.054 35.54 0.992 0.023 33.33 0.987 0.030
3DGStream 27.46 0.960 0.075 33.88 0.986 0.033 29.14 0.969 0.047
Ours 32.07 0.980 0.039 37.03 0.992 0.018 35.46 0.988 0.022

Type Method 0013 03 0013 09 Average

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Holistic 4K4D 34.41 0.986 0.022 36.48 0.989 0.020 34.52 0.985 0.025
STG 27.49 0.965 0.037 31.84 0.977 0.031 28.49 0.966 0.041

Incremental
NeuS2 33.60 0.987 0.029 36.27 0.990 0.025 33.80 0.987 0.032
3DGStream 29.78 0.972 0.045 33.63 0.982 0.037 30.78 0.974 0.047
Ours 35.43 0.988 0.020 37.19 0.990 0.020 35.44 0.988 0.024

Table 2. Per-scene quantitative results on the DNA-Rendering dataset [1]. The best values are highlighted in red , and the second-best
values in yellow . Our method achieves the highest rendering quality compared to all other baselines.

Method sport 1 sport 2 sport 3 basketball Average

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
4K4D 33.37 0.975 0.026 34.57 0.968 0.052 34.19 0.968 0.051 32.49 0.977 0.027 33.65 0.972 0.039
STG 28.65 0.952 0.068 29.88 0.958 0.065 26.34 0.940 0.084 27.35 0.949 0.080 28.05 0.949 0.074

NeuS2 33.53 0.975 0.038 33.62 0.971 0.047 33.35 0.972 0.044 31.66 0.970 0.057 33.04 0.972 0.047
3DGStream 31.73 0.960 0.070 31.12 0.955 0.082 30.86 0.954 0.083 29.08 0.951 0.096 30.70 0.955 0.083
Ours 33.64 0.974 0.046 34.42 0.973 0.056 34.14 0.974 0.052 31.99 0.972 0.060 33.55 0.973 0.054

Table 3. Per-scene quantitative results on the NHR dataset [8].


	. Implementation Details
	. Additional Dataset Details
	. Additional Ablation Study
	. More Results
	. Supplementary Video
	. Potential Societal Impact

