
S1. CESS Module Architecture
The architecture of CESS is shown in Fig. 6. The scenes

with and without applied SCA first pass through different
random similarity transformations, such as rotation, scaling
and translation. The scene with SCA will be inputted to
the student model; whereas, the scene without SCA will be
inputted to the teacher model. The outputs of both models
are then normalised before computing the loss. We define
the pipeline taking the scene with SCA as the supervised
branch and the other pipeline as the supervising branch. In
this case, we hypothesise that the output in the supervising
branch has better quality since the prediction of the teacher
model is more stable by nature and the unaugmented input
incurs less context break.

S2. Formal Definition of PG in GCAS
We introduce a probabilistic framework designed to as-

sess the compatibility of a potential class addition within a
given scene. Specifically, we deploy a probability estima-
tor, denoted as PG, to evaluate the likelihood that an object
from the proposed class would seamlessly integrate into the
existing scene configuration, considering the current assort-
ment of objects. The estimator PG is formulated to accept
inputs comprising object counts within the scene, symbol-
ized as cnt1, cnt2, ..., cntNK , where each cnti quantifies
the count of objects from class i, as determined by a pre-
viously described clustering algorithm. This process yields
a probability vector, PG(cnt1, cnt2, ..., cntNK ) → [0, 1]NK ,
with each vector element signifying the likelihood of an ad-
ditional object from each class fitting into the scene.

To instantiate PG, we employ a multinomial Naive
Bayes classifier, leveraging its efficacy in modelling the
probability of class occurrences. The classifier is trained on
data reflective of the class distribution observed in the train-
ing dataset splits. For each scene representation, we gen-
erate a collection of training samples, (Cnti, i) | i → Ks,
wherein Ks is the set of classes with concrete shapes ob-
served within the scene, and Cnti represents the adjusted
object count distribution for the scene, diminished by one
for the considered class i, effectively rendering Cnti =
(cnt1, cnt2, ..., cnti→1, cnti ↑ 1, ..., cntNK ). Noted that,
since the class of each object in the target dataset is deemed
unknown in the UDA setting, counts are produced based on
pseudo-labels for target datasets. This methodology facili-
tates a nuanced understanding of class compatibility within
varied scene configurations, underpinning our approach to
scene augmentation.

S3. Cluster Arrangement Algorithms
Algorithms 1 and 2 describe the details of our algorithms

for in-room and on-wall cluster centre search here. For in-
room clusters centre search, we verify whether a candidate

is valid by examining whether placing the new clusters at
the position will introduce a collision. For on-well clus-
ters centre search, we detect misalignment of the wall and
the window instead. Misalignment is detected by checking
the maximum distance between the cluster points and their
nearest neighbours in the scene. If this distance is below a
threshold d, the candidate centre point and normal form a
valid pair (Xvalid, N̂valid).

Algorithm 1: In-room clusters centre search
Input : Xscene, Xclr, Np

Obtain Bscene ↓ get2DBoundingBox(Xscene);
Obtain zfloor ↓ getFloorHeight(Xscene);
for 1, 2, . . . , Np do

(x, y) ↓ randomXY(Bscene);
Xcand ↓ (x, y, zfloor);
move(Xclr, Xcand);
if not collide(Xclr, Xscene) then

Xvalid ↓ Xcand;
break

end
end
Output: Xvalid

Algorithm 2: On-wall clusters centre search algo-
rithm

Input : Xwall, Xclr, Nq, d

Set Xvalid, N̂valid ↓ None,None;
Obtain N̂wall ↓ estimateNormals(Xwall);
Obtain I ↓ randomInt(1, |N̂ |, size = Nq);
for i in I do

Xcand, N̂cand ↓ X(i)
wall, N̂

(i)
wall;

move(Xclr, Xcand);
N̂clr ↓ getLargestFaceNormal(Xclr);
angle ↓ arccos (N̂clr · N̂cand);
rotate(Xclr, angle);
d↑ ↓ Xclr.distNearestNeighbor(Xwall);
if d↑ ↔ d then

Xvalid, N̂valid ↓ Xcand, N̂cand;
break

end
end
Output: Xvalid, N̂valid

S4. Visualisation of Augmented Scenes
Figure 7 illustrates the visualisation of in-domain and

cross-domain augmentations. During the pre-training
phase, in-domain augmentation is applied, where both the
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Figure 6. The architecture of CESS. RST stands for random similarity transformations. Similar to Fig. 4 in the main paper, we use ω and
ε for generality. Xω

c are point cloud added to Xε in the SCA module (i.e., objects from ω domain). Y ω
c and Ŷ ω

c are the label and the
prediction of Xω

c . Ŷ [ω]
ε,d and Ŷ [ω]

ε,g are the prediction of Xε from the augmented and unaugmented scenes, respectively.

object bank and the scene originate from the same do-
main, resulting in visually similar object styles but en-
hancing the diversity of room layouts. In contrast, during
the self-training phase, cross-domain augmentation is em-
ployed, where the object bank and scene come from differ-
ent domains (e.g., the object bank is generated from 3D-
FRONT while the scene is sourced from ScanNet, or vice
versa). This leads to more heterogeneous objects in the aug-
mented scene, effectively creating an intermediate domain
that bridges the gap between the source and target domains.

S5. Implementation Details
In our implementation, we utilize the same backbone as

in DODA [10] for a fair comparison, a sparse-convolution-
based U-Net backbone [6,17] which serves as our semantic
parser F . We follow the protocols outlined in DODA [10]
including dataset preparation and splitting for validation
and hyperparameter tuning.

S5.1. Module Hyper-parameters
In the SCA module, we employ DBSCAN [11] for 3D

point cloud clustering. Note that this can be any clustering
algorithm. We chose DBSCAN simply because it has been
implemented by the Python package Open3D [85], which
we used to process the point cloud in our experiments. The
density parameter is set to 0.1, and the minimum number of
points required for a cluster to be considered as a vocabulary
is set to 50 in our experiments. For each scene, we generate
10 additional clusters (N ↑

c) using the SCA module. When

Figure 7. Examples of scenes augmented with SCA.

arranging in-room clusters, we sample 10 candidate poses
(Np) to prevent over-crowding the training scenes. How-
ever, for on-wall clusters, we sample 20 candidate poses
(Nq) since the estimated normals of walls tend to be noisy,
leading to a higher likelihood of invalid candidate poses. To
determine the validity of candidate poses for on-wall clus-
ters, we use a threshold of 0.3 meters (d).

In the CESS module, ω is set to 0.999 and the pseudo
labels update frequency Nu to 5 in our experiments.



S5.2. Optimisation Hyper-parameters
In terms of the weights for our objective terms, we use

εs =1.0, εt =0.5, and εc =5.0. Note that εc is assigned a
greater value compared to the others since the distribution
of the normalized output from F is relatively confined, re-
sulting in smaller values for Lc compared to Ls and Lt. For
the optimisor, we use SGD with 0.0001 for weight decay
and 0.9 for momentum.

S6. Discussion on Failure Cases
As discussed in the main paper, we observe that on the

3D-FRONT ↗ ScanNet setting, the performance on the
wall class becomes worse after adding the CESS module.
We attribute this change to the inaccurate pseudo-labels and
the characteristics of the CESS module.

In the real scenes, due to the errors in reconstruction,
walls are often uneven with fluctuations. However, in the
synthetic scenes, the walls are flat and connected to the
floor. Uneven patterns that adhere to the wall and are con-
nected to the floor in the synthetic scene only occur when
doors are presented. Therefore, when producing the pseudo
label of the real data by predicting with the model pre-
trained on the synthetic data, uneven walls are often pseudo-
labelled as doors (see Fig 8).

Points that occur before applying SCA will have a larger
impact on the loss with the CESS module. This is be-
cause only those points will be supervised by both the
(pseudo-)labels and the supervising branch; whereas, the
points added to the scene via SCA will only be supervised
by the (pseudo-)labels. This characteristic will further am-
plify the negative impact of the inaccurate pseudo labels,
which cause the performance to drop on walls after adopt-
ing CESS.

Figure 8. Predictions on ScanNet scenes. Points predicted as walls
and doors are coloured in blue and red, respectively. Walls are
often mislabelled as doors since the door frame in the real data is
not significant due to the inherent noise of the wall.

S7. Efficiency of the Method
We conduct experiments on a computing platform with

NVIDIA A10 (25GB VRAM/GPU), 30 vCPUs, 200 GB

Figure 9. Clusters of a bed constructed with different DBSCAN
parameters.

RAM, and 1.4 TB SSD. The inference efficiency stays the
same as DODA [10] (86.6 ms/sample) since our modules
are only enabled during training. Training with and without
SCA takes 604.8 and 450.9 seconds per epoch on average,
respectively.

S8. Influence of DBSCAN
Although DBSACN in our experiment can be replaced

by any suitable out-of-box clustering algorithms and our re-
search does not focus on DBSACN, we provide the influ-
ence of hyper-parameters of DBSCAN to clustering results
to facilitate future research in this community. In Fig. 9, an
object is grouped into several clusters with a smaller ϑ=0.05;
whereas, furniture in a scene is grouped as one cluster with a
larger ϑ=0.5; with large min points (the minimum num-
ber of points to form a cluster), object parts with lower den-
sity will be missed during clustering.

S9. Comparison with Other Data-mixing
Methods

Mix3D [48] is a data-mixing method that augments a
scene by adding the entire point cloud of another scene
into the same spatial domain, resulting in overlap between
scenes. This approach has been shown to significantly im-
prove segmentation quality. To evaluate the effectiveness of
our proposed SCA, we reprint a subset of the results from
DODA [10] for direct comparison. Our data-mixing method
outperforms Mix3D by 7.17%.

S10. Ablation on point grouping
As discussed in Section 3.1, CINMix [83] employs a dif-

ferent design choice compared to our SCA when grouping
points for vocabulary bank construction. To evaluate the



Table 6. Ablation study of data-mixing methods on 3D-FRONT
→ ScanNet. TACM is the augmentation algorithm proposed in
DODA [10].

Method mIoU
Mix3D [48] 48.62
TACM [10] 51.42
Ours (SCA) 55.79

impact of this difference, we conducted an experiment by
replacing our Euclidean-based, semantic-agnostic grouping
mechanism in the SCA module with their semantic-aware
approach. As shown in Table 7, the results demonstrate that
preserving local context using our method yields better per-
formance in the task, compared to the potential benefits of
increased augmentation diversity from CINMix’s semantic-
aware grouping.

Table 7. Ablation study of point-grouping methods on 3D-FRONT
→ ScanNet. Semantic-aware is the strategy employed by CIN-
Mix [83]. The experiment was conducted in the pre-train stage.

Method mIoU
Semantic-aware (CINMix [83]) 39.88

Semantic-agnostic (Ours) 43.48

S11. Limitations and Future Work
In the context of unsupervised domain adaptation, the

present method is constrained by its ability to only segment
classes common to both the source and target domains, ow-
ing to the absence of labels in the target domain. This limi-
tation impedes the generalizability of the semantic segmen-
tation framework. To address this challenge, future investi-
gations could explore the integration of large language mod-
els (LLMs) to endow the segmentation model with the ca-
pability for open-vocabulary segmentation, thus enhancing
its adaptability across diverse domains.

Regarding the methodology for incorporating windows
into walls, one potential issue is that windows might pro-
trude beyond the confines of the wall boundary. Although
this phenomenon was not observed in our evaluation of aug-
mented scenes, it remains a conceivable outcome. Preven-
tative measures could include the decrement of the param-
eter d within the clustering algorithm or the establishment
of a distinct distance constraint dup for the upper margin
of wall-mounted objects, ensuring their containment within
wall boundaries.

This study endeavours to maintain the simplicity and
applicability of the proposed augmentation technique for
large-scale dataset enhancement. While ensuring the log-
ical coherence of augmented scenes was a priority, the in-
corporation of improvisational layout augmentations—such

as the placement of a lamp atop a table—was deferred, due
to the complexities associated with validating the feasibil-
ity of new layouts. Nevertheless, this concept presents a
promising avenue for future research, with the potential to
significantly enrich the diversity and realism of augmented
scenes.

S12. More Literature Review
3D Semantic Segmentation Domain Adaptation is im-
portant for many applications like autonomous vehicle, se-
mantic mapping and construction site monitoring, with a
particular focus on enclosing discrepancies induced by dif-
ferent LiDAR sensors or positions. Some methods [2,
54] employ a hand-crafted approach to achieve domain-
invariant representations, such as normalization of the in-
put feature spaces of different mounting positions. Domain
mapping [4,34,47,57,58] is another common approach that
is often used in dataset-to-dataset applications, in which the
labelled source data is usually transformed to appear more
like the target data, creating a pseduo-labeled target dataset.
Domain-invariant feature learning is done by constructing
a common feature representation space for both source and
target domains. Similar to UDA, they can also be catego-
rized into divergence minimization [23, 46, 73] and adver-
sarial learning-based approaches [24, 72, 81].
3D Indoor Semantic Segmentation. In the 3D indoor se-
mantic segmentation task, early approaches [9,62] focus on
exploring 3D volumes. Instead of using volumes, point-
based models [20, 22, 41, 51, 71] directly learn from un-
ordered point clouds and construct point representation. To
address point cloud on a large scale, approaches [29,33,53]
such as super-points and structured hierarchical data are
proposed. Another direction is to circumvent processing 3D
data directly. Multiple-view approaches [8, 32, 35] transfer
2D segmentation into 3D, which can potentially scale better
to large-scale scenes.
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Figure 10. The first three and the last three rows are the qualitative comparisons on FRONT-3D → ScanNet and FRONT-3D → S3DIS,
respectively. The bounding boxes highlight the parts that our method significantly outperform the SOTA method DODA [10].


