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1. Experimental Setup

Vision-language Models. We investigate different models
from OpenFlamingo [3], IDEFICS [7] and MMICL [18]
with various model sizes as shown in Tab. 1. Open-
Flamingo [3] and IDEFICS [7] are popular open-source
reproductions of Flamingo with competitive ICL perfor-
mance. The architecture of these models consists of a
frozen large language model with decoder-only structure
(e.g., MPT [14] in OpenFlmaingo and LLaMA [16] in
IDEFICS), a frozen visual encoder (e.g., CLIP-ViT [12])
followed by a trainable perceiver resampler. There are also
trainable gated cross-attention layers interleaved between
pre-trained LM layers to bridge the gap between visual
and language information. Per-image attention masking is
adopted in these cross-attention layers. This ensures that
at any particular text token, the model focuses solely on
the visual tokens from the immediately preceding image in
the interleaved sequence, rather than on all preceding im-
ages. The 7 models used in this study vary in their model
size (from 3B to 9B), pre-trained datasets, and whether fine-
tuned by instruction tuning. OpenFlamigo is trained on 2B
image-text pairs in LAION-2B [13] and 43M interleaved
image-text sequences in Multimodal C4 [19]. IDEFICS is
trained on OBELICS [7] which contains 141M multimodal
Engish web documents with 353M images and 115B to-
kens. Both models achieve competitive performance com-
pared to Flamingo [1]. The instruction-finetuned versions
are also used in this work. For instance, IDEFICS-9B-I
starts from the base IDEFICS models and is fine-tuned by
unfreezing all the parameters on various datasets, such as
M3IT [9] and LLaVA-Instruct [10]. MMICL [18] uses a
different model architecture and treats image and text rep-
resentations equally. MMICL first uses a ViT to get image
representations. Then Q-Former is used to extract visual
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Table 1. Vision-language models studied in this work. OF stands
for OpenFlamingo [3] and I means instructed version.

Model Vision Encoder Language Model

OF-3B CLIP Vit-L/14 MPT-1B [14]
OF-3B-I CLIP Vit-L/14 MPT-1B-I [14]
OF-4B CLIP Vit-L/14 RedPajama-3B [15]

OF-4B-I CLIP Vit-L/14 RedPajama-3B-I [15]
OF-9B CLIP Vit-L/14 MPT-7B [14]

IDEFICS-9B OpenCLIP Vit-H/14 LLaMA-7B [16]
IDEFICS-9B-I OpenCLIP Vit-H/14 LLaMA-7B [16]

MMICL CLIP ViT-G/14 FlanT5-XL [18]

embeddings and a fully connected layer converts each vi-
sual embedding to the same dimension as the text embed-
ding of the LLM. Finally, the visual embeddings of multiple
images and text embeddings are combined in an interleaved
style and fed into the LLM.

Evaluation Datasets and Metrics. Three popular VL tasks
(i.e., visual question answering, visual reasoning, and im-
age captioning) and 4 well-known VL datasets are applied
in this work. For visual question answering, VQAv2 [5] and
OK-VQA [11] are adopted. Additionally, we incorporate
GQA [6] for visual reasoning and MSCOCO [4] for image
captioning. The statistics are in Tab. 2. Accuracy on the
Karpathy-test split is evaluated for VQAv2. For OK-VQA,
accuracy on the validation split is evaluated, and accuracy
on the test-dev split is used for GQA. CIDEr [17] on the
Karpathy-test split is used in MSCOCO. All experiments
are conducted on one Nvidia DGX Node with 4 Nvidia
A100 (80GB) GPUs, 1TB memory, and 252 CPU Cores.
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Table 2. Dataset Statistics. Four well-known datasets from three
popular vision-language tasks are used in this study.

Task Dataset # Images# Image-text pairs

VQA
VQAv2 [2] 123.2K 658.1K

OK-VQA [11] 14K 14K
Visual Reasoning GQA [6] 82.3K 1087.7K
Image Captioning MSCOCO [4] 123.2K 576.8K

2. Additional Results of Importance Investiga-
tion on Visual and Textual Information

2.1. Importance of Visual Information

To evaluate the importance of visual information, we
have designed various demonstration settings as shown in
Tab. 3.

• standard setting refers to the scenario where both
demonstrations and queries incorporate their respec-
tive original image-question pairs.

• demo w/o images describes the case where the vi-
sual information from the demo context is removed by
deleting all the images in the context demonstration.
The context then only includes N text-only instruc-
tions such as the questions in VQA or the captions in
the task of image captioning.

• demo w/ blank images refers to the scenario where the
images and image position tokens in the demonstra-
tions are kept but the original images are replaced with
blank images, i.e., all the pixel values are set to 255.
Although there are still images in the demonstrations,
they do not provide any valuable information.

• demo w/o query images refers to the setting in which
the image presented in the query input is removed
whereas the images in the demonstrations are retained.

Performance of OF-9B and IDEFICS-9B across 4
datasets given random selected demonstrations are pre-
sented in Tab. 5 and Tab. 6. When compared to the stan-
dard setting, the demo w/o images and demo w/ blank set-
tings largely maintain the ICL performance, with some as-
pects showing little change. In contrast, the demo w/o query
images setting leads to a significant reduction in ICL per-
formance, including up to a 50% decrease in VQA perfor-
mance and nearly a 100% decrease in image captioning per-
formance. We also conducted experiments using RICES,
i.e., Retrieval-based In-Context Examples Selection, in the
demo w/o images setting and the results are in Tab. 7 and
Tab. 8. The results also suggest that the images in the se-
lected demonstrations do not significantly contribute to the
performance gain. Instead, the remaining textual informa-
tion plays a more crucial role. Besides, we also conducted

experiments on models without the masked cross-attention
and the results also indicate the limited influence of demo
images as shown in Tab. 9.

2.2. Importance of Textual Information

To evaluate the importance of visual information, we
have designed various demonstration settings as shown in
Tab. 4.

• standard refers to the case where demonstrations
incorporate their respective original image-question
pairs.

• different answer for same question corresponds to the
case where the original answer is replaced with another
one from the same question. Despite the question re-
mains the same, the replacement answer can vary due
to the differences in the image content.

• random question describes the case where the original
question is replaced with another one that has different
content but the answer remains unchanged.

• random words as labels refers to the case where the
original response in the demonstration, such as an-
swers in VQA and captions in image captioning, is re-
placed with random English words.

Performance of OF-9B and IDEFICS-9B across 4
datasets given randomly selected demonstrations are pre-
sented in Tab. 10 and Tab. 11.

3. More Details of Understanding Multimodal
Information Flow

The ability to handle interleaved text and image se-
quences makes ICL possible [1]. An illustration is pre-
sented in Fig. 1, with two demos and a query, each of which
contains an image and corresponding text such as I1 and
T1 in the first demo. The masked cross-attention layer en-
ables the language models to incorporate visual information
for the next-token prediction. This layer also limits the vi-
sual tokens the model can see at each text token. Specif-
ically, at a given text token, the model only attends to the
visual tokens of the last preceding image, rather than to all
previous images in the interleaved sequence. For exam-
ple, text embedding Tq can only attend to the query im-
age Iq in the masked cross-attention layer, as shown in the
last row of Ac in Fig. 1. Therefore, demonstration images
I1 and I2 cannot directly pass their visual information to
the query text embedding Tq, as Tq is limited to interact-
ing with the query image representation Iq in the masked
cross-attention layer. Only in the subsequent self-attention
layer can Tq indirectly access the information from I1 and
I2 through the demo text embeddings T1 and T2. Because



Table 3. Examples for different visual demonstration settings with one demonstration and one query. Demo w/o images removes the images
in the demonstration. demo w/ blank images replaces the images in the demonstration with blank ones. demo w/o query images removes
the images in the query.

Setting demo image demo question demo response query image query question

standard What sign is this? Turn left What does the sign mean?

demo w/o images What sign is this? Turn left What does the sign mean?

demo w/ blank images What sign is this? Turn left What does the sign mean?

demo w/o query images What sign is this? Turn left What does the sign mean?

Table 4. Examples for different textual demonstration settings with one demonstration and one query. The differences compared to the
standard setting are highlighted in blue.

Setting demo image demo question demo response query image query question

standard What sign is this? Turn left What does the sign mean?

different answer for same question What sign is this? No entry What does the sign mean?

random question What kind of food is this? Turn left What does the sign mean?

random words as labels What sign is this? Hello What does the sign mean?

they have already processed the visual information from I1
and I2 in the masked cross-attention layer. We argue that
the masked cross-attention mechanism with such per-image
attention masking [1] diminishes text tokens’ dependency
on all previous images. In other words, relying solely on
the self-attention layer for transferring visual information to
text tokens is difficult. Thus, it is observed that the gener-
ated output tokens primarily focus on the latest image, i.e.,
the query image, and largely disregard the visual informa-
tion of the previous images.

Masked cross-attention enables the processing of inter-
leaved text and visual sequences, allowing for in-context
few-shot learning to be possible [1]. As depicted in Fig. 1,
the visual information from demonstration images I1 and
I2 cannot directly influence the query text embedding Tq.
This is because Tq only interacts with the query image rep-
resentation Iq in the masked cross-attention layer. To assess
the impact of visual information from the demonstration on

the generated content, we have devised three settings.

• standard refers to the original ICL setting where vi-
sual embeddings in demonstrations and queries are re-
tained.

• hide demo visual embedding describes the case where
the visual embeddings from demonstration images are
masked and the model can only see the images from
the query, as shown in the left side of Fig. 2.

• hide query visual embedding refers the case where the
visual embeddings from query images are masked, as
shown in the right side of Fig. 2.

To examine the varying effects of visual embeddings in
demonstrations and queries, we can compare the hidden
states and attention weights in the last layer. In particular,
we extract the last row of the hidden states (referred to as
TL

q in Fig. 3) and the attention weights in the last layer. We



Table 5. The performances of OF-9B on different visual demon-
stration settings given random selected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 53.60 53.85 53.60 52.74
demo w/o img 53.61 54.15 53.36 53.15

demo w/ blank img 54.13 53.71 53.12 52.10
demo w/o query img 36.72 37.11 37.95 37.67

OK-VQA

standard 39.62 41.56 43.40 42.97
demo w/o img 40.98 42.86 44.61 43.91

demo w/ blank img 41.77 42.57 43.64 42.82
demo w/o query img 20.42 22.38 22.95 22.67

GQA

standard 36.32 37.74 38.28 37.85
demo w/o img 36.86 38.13 38.40 38.23

demo w/ blank img 37.63 37.73 38.36 38.03
demo w/o query img 29.39 30.24 31.23 31.41

MSCOCO

standard 91.22 96.88 99.44 100.53
demo w/o img 87.26 91.49 98.35 98.85

demo w/ blank img 89.25 93.88 97.91 96.91
demo w/o query img 3.57 4.30 4.90 4.85

Table 6. The performances of IDEFICS-9B on different visual
demonstration settings given random selected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 54.90 56.16 56.93 57.21
demo w/o img 53.66 54.57 55.41 55.34

demo w/ blank img 53.69 54.38 54.98 55.04
demo w/o query img 38.64 39.27 39.71 39.99

OK-VQA

standard 49.24 49.54 51.47 51.86
demo w/o img 47.63 48.28 48.74 48.99

demo w/ blank img 47.66 48.55 49.83 50.24
demo w/o query img 26.91 27.70 28.32 28.67

GQA

standard 39.35 40.54 41.38 41.87
demo w/o img 38.64 39.45 40.27 40.85

demo w/ blank img 38.36 39.94 40.71 41.36
demo w/o query img 31.82 32.47 33.12 33.50

MSCOCO

standard 97.45 101.85 102.96 105.62
demo w/o img 67.77 81.01 85.81 90.72

demo w/ blank img 88.75 92.27 95.49 96.83
demo w/o query img 2.86 3.14 3.05 3.02

then compute the cosine similarity between these extracted
values and their counterparts in the standard setting.

4. More Results on the ICL Performance Im-
provement

4.1. More Results

We have conducted experiments using various mod-
els and VL datasets, which are listed in Table 1 and Ta-
ble 2. The results, based on all models, are obtained from
demonstrations selected using random selection, RICES,
and MMICES, and are presented in Table 12 to Table 18.
Overall, MMICES outperforms the other two methods and
achieves the best results in most cases. Tab. 23 presents
examples selected by MMICES and RICES.

Table 7. The performances of OF-9B on different visual demon-
stration settings given demonstrations selected by RICES.

Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 53.60 53.85 53.60 52.74
RICES 54.17 54.67 55.39 55.77

RICES demo w/o img 54.38 55.46 55.56 55.71

OK-VQA
Random 39.62 41.56 43.40 42.97
RICES 42.00 43.87 44.70 46.15

RICES demo w/o img 42.23 44.94 46.20 46.65

GQA
Random 36.32 37.74 38.28 37.85
RICES 36.92 38.54 40.17 40.35

RICES demo w/o img 37.21 39.37 397.84 40.05

MSCOCO
Random 91.22 96.88 99.44 100.53
RICES 93.45 99.74 105.76 109.12

RICES demo w/o img 88.49 97.82 103.67 107.69

Table 8. The performances of IDEFICS-9B on different visual
demonstration settings given demonstrations selected by RICES.

Dataset Method 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 54.90 56.16 56.93 57.21
RICES 54.79 56.45 57.49 58.60

RICES demo w/o img 54.94 56.20 57.19 57.67

OK-VQA
Random 49.24 49.54 51.47 51.86
RICES 48.82 50.55 52.42 53.22

RICES demo w/o img 48.02 50.24 51.60 51.76

GQA
Random 39.35 40.54 41.38 41.87
RICES 39.86 41.27 43.01 43.67

RICES demo w/o img 39.33 41.15 42.44 43.41

MSCOCO
Random 97.45 101.85 102.96 105.62
RICES 91.20 102.58 108.93 111.03

RICES demo w/o img 64.15 73.62 79.45 84.92

Table 9. The performances of Qwen-VL on VQAv2. We observe
similar trend where the removal of images lead to no performance
decrease.

Model Setting 4 8 16

Qwen-VL standard 74% 74% 72.3%
demo w/o img 75.6% 74.3% 75.9%

4.2. Ablation Study

The choices of K. The number of pre-filtered samples, de-
noted as K, selected by visual similarity is a hyperparame-
ter in MMICES. A larger value of K allows for a broader se-
lection space for the second filtering stage, while a smaller
value of K is more efficient. The performance compari-
son for different values of K (k ∈ {50, 100, 200, 300}) is
presented in Table 19. A larger K results in a greater num-
ber of candidate demonstrations filtered by visual similar-
ity, which is particularly useful when the number of shots
is small. However, a larger K may also include visual-
unrelated demonstrations despite having similar text, poten-
tially leading to a negative impact on performance.



Table 10. The performances of OF-9B on different textual demon-
stration settings given random selected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 53.60 53.85 53.46 52.74
diff ans for same question 52.49 52.70 52.06 50.92

random question 41.48 33.94 27.93 20.03
random words as labels 3.59 0.03 0.00 0.00

OK-VQA

standard 39.62 41.56 43.40 42.97
diff ans for same question 39.63 41.23 42.41 42.44

random question 25.03 18.23 13.00 8.59
random words as labels 3.95 0.10 0.01 0.00

GQA

standard 36.23 35.92 37.29 34.38
diff ans for same question 36.38 37.25 37.75 37.58

random question 28.01 22.83 17.71 15.44
random words as labels 2.06 0.05 0.00 0.00

MSCOCO
standard 91.23 96.88 99.44 100.53

diff ans for same question 84.96 94.95 97.44 99.71
random words as labels 1.60 0.62 0.17 0.00

Table 11. The performances of IDEFICS-9B on different textual
demonstration settings given random selected demonstrations.

Dataset Setting 4-shot 8-shot 16-shot 32-shot

VQAv2

standard 54.90 56.16 56.93 57.21
diff ans for same question 54.10 55.21 56.15 57.01

random question 47.25 45.94 43.53 39.48
random words as labels 5.91 0.34 0.03 0.00

OK-VQA

standard 49.24 49.54 51.47 51.86
diff ans for same question 49.25 50.18 51.11 50.95

random question 38.41 34.04 30.08 29.53
random words as labels 7.38 1.33 0.30 0.11

GQA

standard 39.35 40.54 41.38 41.87
diff ans for same question 38.80 40.07 41.49 41.92

random question 33.65 33.61 32.13 30.04
random words as labels 3.14 0.27 0.02 0.03

MSCOCO
standard 97.45 101.85 102.96 105.62

diff ans for same question 84.12 64.83 52.70 53.38
random words as labels 0.00 0.00 0.00 0.00

Table 12. The performances of random selection, RICES, and
MMICES on OF-3B. The highest performance in each shot sce-
nario is highlighted in bold. The results are averaged over 5 eval-
uation seeds and are reported along with their standard devia-
tions. The performance metric for the MSCOCO dataset is CIDEr,
while for the remaining datasets, accuracy is reported in percent-
ages. MMICES achieves the best performance in all settings on all
datasets.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 43.45 (0.16) 44.79 (0.12) 45.05 (0.05) 45.30 (0.17) 45.64 (0.20)
RICES 43.45 (0.16) 44.64 (0.09) 45.71 (0.12) 46.30 (0.03) 47.48 (0.05)

MMICES 43.45 (0.16) 47.00 (0.06) 48.46 (0.07) 49.50 (0.06) 49.68 (0.03)

OK-VQA
Random 28.18 (0.25) 30.46 (0.29) 30.29 (0.50) 31.40 (0.25) 31.40 (0.44)
RICES 28.18 (0.25) 30.89 (0.09) 32.47 (0.04) 33.97 (0.12) 34.85 (0.04)

MMICES 28.18 (0.25) 35.34 (0.19) 37.41 (0.01) 38.00 (0.13) 38.23 (0.09)

GQA
Random 28.70 (0.22) 30.57 (0.09) 32.31 (0.19) 33.49 (0.30) 33.33 (0.10)
RICES 28.70 (0.22) 30.96 (0.06) 32.69 (0.20) 34.08 (0.11) 35.02 (0.04)

MMICES 28.70 (0.22) 37.70 (0.06) 38.49 (0.10) 38.85 (0.17) 38.37 (0.16)

MSCOCO
Random 75.14 (0.69) 76.48 (0.50) 82.01 (0.35) 86.52 (1.00) 90.53 (0.42)
RICES 75.14 (0.69) 90.30 (0.09) 97.38 (0.36) 102.91 (0.26) 105.62 (0.10)

MMICES 75.14 (0.69) 99.21 (0.23) 103.42 (0.35) 106.94 (0.21) 109.19 (0.31)
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Figure 1. Model block supporting interleaved image-text inputs.
Visual and language information, i.e., I and T , are first fused us-
ing a masked cross-attention layer, where each text token is only
conditioned on the last preceding image. Visual embeddings I1
and I2 from demonstration images cannot directly influence query
text embedding Tq, and Tq only sees Iq in the masked cross-
attention, as shown in the last row of Ac.
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Figure 2. Compared with the standard setting, we hide demo visual
embedding and query visual embedding respectively to explore the
influence of different visual embeddings.

Table 13. The performances of random selection, RICES, and
MMICES on OF-3BI. MMICES achieves the best performance
in all settings on all datasets.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 43.55 (0.18) 45.54 (0.12) 45.77 (0.19) 45.71 (0.15) 45.05 (0.19)
RICES 43.55 (0.18) 45.06 (0.09) 45.41 (0.07) 45.65 (0.04) 46.11 (0.12)

MMICES 43.55 (0.18) 48.41 (0.01) 48.38 (0.05) 48.96 (0.05) 48.86 (0.04)

OK-VQA
Random 29.07 (0.17) 31.26 (0.44) 31.85 (0.10) 32.08 (0.20) 31.37 (0.12)
RICES 29.07 (0.17) 32.30 (0.11) 33.76 (0.14) 34.52 (0.07) 35.51 (0.03)

MMICES 29.07 (0.17) 37.10 (0.13) 38.65 (0.09) 39.04 (0.10) 38.24 (0.03)

GQA
Random 29.68 (0.17) 32.07 (0.06) 33.43 (0.30) 33.75 (0.24) 33.18 (0.28)
RICES 29.68 (0.17) 30.96 (0.06) 33.27 (0.26) 34.17 (0.15) 34.36 (0.08)

MMICES 29.68 (0.17) 37.72 (0.11) 38.64 (0.06) 38.58 (0.03) 38.25 (0.15)

MSCOCO
Random 75.10 (0.24) 82.11 (0.68) 86.14 (0.39) 90.17 (0.46) 92.86 (0.44)
RICES 75.10 (0.24) 92.43 (0.23) 99.36 (0.23) 104.48 (0.33) 106.88 (0.21)

MMICES 75.10 (0.24) 100.43 (0.14) 104.82 (0.13) 107.61 (0.18) 109.44 (0.25)
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Figure 3. We compute the cosine similarity on the last row of
hidden states,i.e., TL

q in this figure, and attention weights, i.e., As

in this figure, in the last decoder layer for each generation forward
and then average the results over the whole dataset.

Table 14. The performances of random selection, RICES, and
MMICES on OF-4B. MMICES achieves the best performance in
all settings on all datasets.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 44.05 (0.20) 47.74 (0.24) 47.10 (0.04) 44.32 (0.12) 41.88 (0.25)
RICES 44.05 (0.20) 47.70 (0.04) 46.68 (0.18) 44.91 (0.07) 42.86 (0.08)

MMICES 44.05 (0.20) 48.89 (0.04) 48.61 (0.09) 46.45 (0.07) 43.73 (0.06)

OK-VQA
Random 31.31 (0.32) 35.01 (0.25) 33.87 (0.20) 29.04 (0.16) 27.09 (0.29)
RICES 31.31 (0.32) 34.97 (0.16) 33.41 (0.07) 29.47 (0.09) 28.79 (0.08)

MMICES 31.31 (0.32) 37.46 (0.09) 37.20 (0.10) 33.99 (0.12) 30.23 (0.05)

GQA
Random 27.16 (0.01) 31.45 (0.35) 33.07 (0.25) 33.17 (0.33) 32.64 (0.13)
RICES 27.16 (0.01) 31.38 (0.24) 33.68 (0.18) 34.58 (0.25) 34.42 (0.19)

MMICES 27.16 (0.01) 38.54 (0.16) 39.53 (0.13) 39.31 (0.12) 37.22 (0.11)

MSCOCO
Random 76.45 (0.65) 81.41 (0.19) 90.48 (0.35) 92.83 (0.66) 93.72 (0.61)
RICES 76.45 (0.65) 89.25 (0.17) 96.60 (0.24) 102.70 (0.20) 105.14 (0.05)

MMICES 76.45 (0.65) 98.61 (0.17) 102.56 (0.13) 105.66 (0.04) 105.89 (0.21)

Table 15. The performances of random selection, RICES, and
MMICES on OF-4BI. MMICES achieves the best performance
in most cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 45.55 (0.29) 47.74 (0.11) 46.20 (0.15) 44.01 (0.23) 46.33 (0.14)
RICES 45.55 (0.29) 48.24 (0.08) 46.27 (0.12) 44.32 (0.13) 47.55 (0.12)

MMICES 45.55 (0.29) 49.03 (0.04) 48.22 (0.07) 47.42 (0.03) 48.85 (0.05)

OK-VQA
Random 32.15 (0.21) 34.56 (0.31) 33.73 (0.27) 31.61 (0.15) 34.29 (0.62)
RICES 32.15 (0.21) 34.86 (0.05) 34.40 (0.09) 32.52 (0.13) 36.73 (0.06)

MMICES 32.15 (0.21) 38.14 (0.07) 38.23 (0.16) 36.08 (0.09) 37.32 (0.14)

GQA
Random 28.42 (0.07) 32.10 (0.23) 33.53 (0.32) 34.32 (0.25) 35.53 (0.29)
RICES 28.42 (0.07) 32.59 (0.08) 34.51 (0.25) 35.19 (0.15) 37.07 (0.10)

MMICES 28.42 (0.07) 38.61 (0.09) 39.48 (0.16) 39.73 (0.13) 39.56 (0.06)

MSCOCO
Random 80.30 (0.15) 85.97 (0.46) 91.71 (0.12) 96.70 (0.19) 98.06 (0.31)
RICES 80.30 (0.15) 92.67 (0.08) 101.38 (0.15) 105.75 (0.13) 108.22 (0.05)

MMICES 80.30 (0.15) 100.59 (0.07) 105.16 (0.22) 108.08 (0.10) 107.96 (0.20)

Textual information on image captioning. MMICES con-
siders both visual and textual information when selecting
demonstrations. It chooses demonstrations that have both
similar images and similar texts. However, in the task of
image captioning, the textual information in the queries can-
not be directly used as the desired response. To obtain the

Table 16. The performances of random selection, RICES, and
MMICES on OF-9B. MMICES achieves the best performance in
most cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 51.38 (0.17) 53.52 (0.11) 53.74 (0.19) 53.33 (0.26) 52.38 (0.10)
RICES 51.38 (0.17) 54.03 (0.13) 54.67 (0.06) 55.39 (0.12) 55.77 (0.08)

MMICES 51.38 (0.17) 53.11 (0.03) 53.56 (0.05) 54.04 (0.04) 55.14 (0.02)

OK-VQA
Random 37.62 (0.39) 39.62 (0.29) 41.56 (0.20) 43.40 (0.39) 42.97 (0.11)
RICES 37.62 (0.39) 42.13 (0.13) 43.87 (0.15) 44.90 (0.10) 46.15 (0.06)

MMICES 37.62 (0.39) 44.18 (0.11) 45.61 (0.08) 46.93 (0.08) 46.79 (0.10)

GQA
Random 34.04 (0.19) 36.32 (0.29) 37.74 (0.32) 38.28 (0.10) 37.85 (0.11)
RICES 34.04 (0.19) 36.92 (0.33) 38.54 (0.14) 40.16 (0.14) 40.21 (0.32)

MMICES 34.04 (0.19) 40.73 (0.09) 41.85 (0.10) 42.21 (0.12) 42.07 (0.08)

MSCOCO
Random 79.52 (0.31) 89.82 (0.23) 96.81 (0.10) 99.44 (0.19) 100.53 (0.26)
RICES 79.52 (0.31) 93.45 (0.07) 99.74 (0.27) 105.76 (0.03) 109.12 (0.20)

MMICES 79.52 (0.31) 100.24 (0.20) 104.90 (0.3) 108.66 (0.17) 109.64 (0.24)

Table 17. The performances of random selection, RICES, and
MMICES on IDEFICS-9B. MMICES achieves the best perfor-
mance in all cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 52.59 (0.30) 54.90 (0.05) 56.16 (0.02) 56.93 (0.18) 57.21 (0.17)
RICES 52.59 (0.30) 54.79 (0.09) 56.45 (0.05) 57.49 (0.06) 58.52 (0.02)

MMICES 52.59 (0.30) 56.15 (0.01) 58.17 (0.03) 59.23 (0.01) 59.69 (0.02)

OK-VQA
Random 44.77 (0.22) 49.24 (0.22) 49.54 (0.12) 50.89 (0.12) 51.86 (0.12)
RICES 44.77 (0.22) 48.82 (0.02) 50.55 (0.05) 52.42 (0.03) 53.22 (0.04)

MMICES 44.77 (0.22) 49.63 (0.02) 52.16 (0.03) 53.65 (0.07) 54.16 (0.05)

GQA
Random 36.45 (0.22) 39.35 (0.26) 40.54 (0.17) 41.38 (0.18) 41.87 (0.13)
RICES 36.45 (0.22) 39.86 (0.13) 41.27 (0.29) 42.65 (0.21) 43.67 (0.19)

MMICES 36.45 (0.22) 42.66 (0.05) 44.22 (0.08) 45.19 (0.05) 45.36 (0.09)

MSCOCO
Random 48.61 (0.52) 96.45 (0.36) 100.85 (0.36) 103.96 (0.38) 105.02 (0.43)
RICES 48.61 (0.52) 91.20 (0.10) 102.58 (0.15) 108.93 (0.10 111.02 (0.08)

MMICES 48.61 (0.52) 101.13 (0.12) 109.31 (0.09) 112.72 (0.05) 113.37 (0.09)

Table 18. The performances of random selection, RICES, and
MMICES on IDEFICS-9BI. MMICES achieves the best perfor-
mance in most cases.

Dataset Method 0-shot 4-shot 8-shot 16-shot 32-shot

VQAv2
Random 62.99 (0.03) 63.94 (0.13) 64.43 (0.14) 64.64 (0.10) 64.87 (0.09)
RICES 62.99 (0.03) 64.13 (0.08) 64.69 (0.03) 65.11 (0.05) 65.22 (0.03)

MMICES 62.99 (0.03) 63.51 (0.13) 64.46 (0.04) 65.26 (0.04) 65.50 (0.02)

OK-VQA
Random 46.18 (0.17) 48.78 (0.48) 49.92 (0.16) 51.18 (0.20) 51.41 (0.12)
RICES 46.18 (0.17) 49.80 (0.03) 51.32 (0.02) 52.42 (0.05) 53.35 (0.03)

MMICES 46.18 (0.17) 51.65 (0.08) 53.21 (0.03) 53.89 (0.03) 54.14 (0.01)

GQA
Random 41.83 (0.21) 43.99 (0.20) 45.70 (0.16) 46.39 (0.08) 46.89 (0.17)
RICES 41.83 (0.21) 44.79 (0.18) 45.63 (0.07) 46.57 (0.16) 46.82 (0.06)

MMICES 41.83 (0.21) 46.33 (0.12) 47.51 (0.09) 47.87 ( 0.13) 48.47 (0.11)

MSCOCO
Random 124.15 (0.63) 132.80 (0.63) 133.02 (0.39) 132.23 (0.37) 132.93 (0.32)
RICES 124.15 (0.63) 124.97 (0.11) 126.84 (0.10) 127.85 (0.10) 128.76 (0.08)

MMICES 124.15 (0.63) 125.42 (0.12) 128.50 (0.09) 129.71 (0.06) 130.55 (0.09)

desired textual information, MMICES first uses the gener-
ated captions from the in-context learning setting with ran-
domly selected demonstrations. It then further selects simi-
lar demonstrations. The performance comparison for differ-
ent shot numbers is shown in Tab. 20. MMICES achieves
the best performance when using generated captions based
on the 4-shot setting.
Different Choice of Modality Mixture. Compared to
RICES, which only compares image similarity, MMICES
considers both visual and language modalities. We also in-
vestigate the performance of ICL when examples are re-
trieved using only text similarity (referred to as text), and
when retrieved by first comparing language and then select-



Table 19. Performance of MMICES given different K.

Dataset K 4-shot 8-shot 16-shot 32-shot

GQA

50 39.43 40.50 40.99 40.48
100 40.72 41.15 41.89 41.09
200 40.73 41.85 42.21 42.07
300 40.76 41.63 42.28 42.20

OK-VQA

50 43.46 45.79 47.48 47.21
100 43.40 45.72 46.50 47.17
200 44.18 45.61 46.93 46.79
300 44.21 45.66 46.00 46.79

Table 20. MMICES on MSCOCO with generated captions from
ICL with randomly selected demonstrations. Based on results with
0-shot, MMICES obtain better results in r-shot and 8-shot settings.
Given generated captions with 4-shot, MMICES achieves the best
results in all settings.

ICL Setting 4-shot 8-shot 16-shot 32-shot

Random 89.82 96.81 99.44 100.53
RICES 93.45 99.74 105.76 109.12

MMICES given Random
0-shot 95.31 100.53 105.06 107.90
4-shot 97.72 102.81 107.37 110.15
8-shot 99.90 104.95 108.20 110.31

16-shot 100.08 104.82 109.11 110.26
32-shot 100.24 104.90 108.66 109.64

ing based on image similarity (referred to as text-image).
Full results are presented in Table 21. Factoring in both
modalities consistently improves ICL performance com-
pared to selecting based solely on one modality.

5. Additional Experimental Analysis

This study has conducted extensive experiments on var-
ious vision-language models, using different sizes, back-
bone language models, and pre-training datasets (as shown
in Tab. 1). This section further discusses our observations
and findings for these different models.
Experiments across models with different sizes. The ICL
performance of different sizes of OpenFlamingo models is
presented in Fig. 4 to Fig. 6. MMICES consistently im-
proves the ICL performance on these datasets across various
model sizes. Larger models, such as OF-9B, demonstrate
better performance compared to smaller models, particu-
larly in visual question answering (Fig. 4) and visual rea-
soning (Fig. 5). It is worth noting that MMICES achieves
better performance on smaller-size models compared to
larger-size models using RICES and random selection, es-
pecially in the 4 and 8-shot settings.
Experiments across different models. The performance

Table 21. Performance with different modality mixture. RICES
compares image similarity. text only considers text similarity. text-
image selects demonstrations by first comparing language similar-
ity and then comparing image similarity.

Data Method 4-shot 8-shot 16-shot 32-shot

VQAv2

Random 53.52 53.74 53.33 52.38
RICES 54.03 54.67 55.39 55.77

text 47.71 47.46 47.49 47.83
text-image 50.27 50.37 49.84 50.56
MMICES 53.11 53.56 54.04 55.14

OK-VQA

Random 39.62 41.56 43.40 42.97
RICES 42.13 43.87 44.90 46.15

text 42.80 43.54 44.01 44.07
text-image 43.61 45.53 45.01 45.50
MMICES 44.18 45.61 46.93 46.79

GQA

Random 36.32 37.74 38.28 37.85
RICES 36.92 38.54 40.16 40.21

text 39.18 40.68 41.59 41.58
text-image 40.93 42.12 42.70 42.63
MMICES 40.73 41.85 42.21 42.07

COCO

Random 89.82 96.81 99.44 100.53
RICES 93.45 99.74 105.76 109.12

text 99.84 102.88 105.57 106.52
text-image 100.72 104.93 106.97 108.56
MMICES 100.24 104.90 108.66 109.64
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Figure 4. The performance of ICL (on OK-VQA) is consistently
enhanced by MMICES on OpenFlamingo with different sizes.

gained from MMICES is consistent across different mod-
els, as shown in Tab. 22 and Fig. 7 to Fig. 9. IDEFICS
achieves better performance compared to OpenFlamingo,
and this difference can be attributed to the use of differ-
ent pre-training datasets and language models in these two
models [7].
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Figure 5. The performance of ICL (on GQA) is consistently en-
hanced by MMICES on OpenFlamingo with different sizes.
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Figure 6. The performance of ICL (on COCO) is consistently en-
hanced by MMICES on OpenFlamingo with different sizes.

Table 22. MMICES achieves better performance across three dif-
ferent MLLMs. The performance is the accuracy evaluated on
OK-VQA.

Model Method 4-shot 8-shot 16-shot 32-shot

OF-9B
Random 39.62 41.56 43.40 42.97
RICES 42.13 43.87 44.90 46.15

MMICES 44.18 45.61 46.93 46.79

IDEFICS-9B
Random 49.24 49.54 50.89 51.86
RICES 48.82 50.55 52.42 53.22

MMICES 49.63 52.16 53.65 54.16

MMICL
Random 49.37 48.90 48.32 47.29
RICES 49.77 49.87 49.24 48.34

MMICES 52.43 52.21 51.20 49.39

5.1. Ablation Study

The number of pre-filtered samples, i.e., K, selected by
visual similarity is a hyperparameter in MMICES. Addi-
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Figure 7. The performance of ICL (on OK-VQA) is consistently
enhanced by MMICES across different models.
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Figure 8. The performance of ICL (on GQA) is consistently en-
hanced by MMICES across different models.

tionally, as MMICES considers both visual and language
modalities, we also investigate the ICL performance when
the examples are retrieved only by text similarity (termed
as text), and when retrieved by first comparing language
and then selecting based on image similarity (termed as
text-image). Fig. 10 shows the performance comparison on
OK-VQA. A larger K leads to more candidate demonstra-
tions filtered by visual similarity and is more useful when
the number of shots is small. Regarding the modality mix-
ture, the results are consistent with our analysis. Retrieval
based on a single modality, such as RICES on visual, un-
derperforms mixed modality retrieval. Besides, MMICES
consistently achieves better results compared to text-image.
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Figure 9. The performance of ICL (on COCO) is consistently en-
hanced by MMICES across different models.
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Figure 11. MMICES consistently enhances the ICL performance
across models of varying sizes. MMICES on smaller models can
even outperform RICES on larger models. Results here are from
GQA and more results are in Supplementary Section 4.

More analysis is presented in Supplementary Section 5.

6. Limitations
This paper primarily focuses on MLLMs with the

masked cross-attention mechanism, i.e., Flamingo [1, 3]
and IDEFICS [7]. These are the first batch of models that
support interleaved input and in-context learning, making
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Figure 12. The performance of ICL (on OK-VQA) is consistently
enhanced by MMICES across different models, including Open-
Flamingo [3], IDEFICS [7], and MMICL [18].

them significant for the community and the primary focus of
this study. However, recent developments have introduced
more MLLMs with various architectures, such as IDEFICS-
2 [8], which uses auto-regressive structure and possesses in-
context learning capabilities. Evaluating these models fur-
ther is part of our future agenda. Additionally, the evalua-
tion tasks in this study are traditional vision-language tasks
such as visual question answering [5] and image caption-
ing [4]. Although these tasks are not specifically designed
for in-context learning, they are typically used to demon-
strate the in-context learning ability of MLLMs, which is
why they were chosen for this study. Incorporating more
tasks and datasets is another step we plan to take in the fu-
ture.



Query Method Demo 1 Demo 2 Demo 3 Model Generation

Who makes the guitar on the wall?

MMICES

Who makes the luggage in this room?
samsonite

Who invented the device pictured?
steve job

Who manufactures this bag?
ll bean

fender

RICES

What kind of suitcase is this?
carry on

Where can you buy these luggages?
walmart

What items would you typically find in these bags?
cloth

yamaha

Name the material used to make this umbrella
shown in this picture?

MMICES

What material are the umbrellas made of?
straw

What is the pattern on the umbrella?
striped

What do you call this type of window covering?
blind

plastic

RICES

What causes high and low tides?
moon

What is the orange triangle in the road called?
cone

When is it bad luck to open the black and pink object in the photo?
inside

rubber

What were they fixing?

MMICES

What happened here?
accident

What safety precaution did both of these people take?
helmet

What is being done on this road?
construction

power line

RICES

What purpose does the white and red striped bar in the picture serve?
stop traffic

Is this person crossing illegally or legally?
legally

What is the job title for the man pictured here?
electrician

light pole

What food item do you think this ornament resembles?

MMICES

What food is this?
carrot cake

What food is this?
cake

What food is this?
candy apple

donut

RICES

What can this make you become if you eat a lot of it?
fat

What type of computer is shown in this image?
desktop

What are donuts topped with?
ice

cookie

What is the purpose of the elephant here?

MMICES

What is the elephant doing?
paint

Why does the elephant go to the water?
thirsty

Why are they riding an elephant?
for fun

decoration

RICES

What country was this photograph taken in?
thailand

How tall do these animals typically grow to be?
11 feet

When was this type of vehicle with two equal sized wheels invented?
1850

park meter

What color is the taxi?

MMICES

What is the name of the body style of the grey vehicle?
minivan

What make and model is the car pictured?
toyota avalon

What liquid makes the vehicle in the picture move?
gasoline

yellow

RICES

What is the use of that pink object over her head?
keep dry

What photo technique is being used?
sephia

Who invented the blue item in this picture?
samuel fox

black

Name a metal shown?

MMICES

What is the silver tool called?
tong

What type of jewelry uses a term similar to one of these veggies?
carrot

Which of these items depicted grows underground?
potato

stainless steel

RICES

When would i eat this?
dinner

How is the the meat in this dish prepared?
grilled

What food group is mostly represented?
meat

copper

What do these animals eat?

MMICES

What do these animals eat?
plant

What do you feed these animals?
hay

What is a staple of the diet of these animals?
fish

grass

RICES

What type of food does this animal eat?
berry

What is a staple of the diet of these animals?
fish

what do these animals do in the winter?
hibernate

berry

Table 23. Examples of demonstrations selected by MMICES and RICES on OK-VQA. Model generations in green are correct and red
means wrong prediction.
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