
Appendix
In this supplemental material, we include additional back-
grounds, visualization results, and analyses. The contents
of the individual sections are:

• Appendix Sec. A: Background on domain generaliza-
tion and causality.

• Appendix Sec. B: visualization results and qualita-
tive analysis of the ablation study on the impact of
fine-tuning the SD U-Net on source domain D0 using
DreamBooth [49] before the ControlNet [65] training.

• Appendix Sec. C: Additional visualization results of
segmentation maps predicted by our method and com-
peting baselines on the abdominal segmentation (AS),
lumbar spine segmentation (LSS) and lung segmenta-
tion (LS) tasks.

• Appendix Sec. D: Additional visualization results of
diffusion-generated augmentations for the AS, LSS
and LS tasks with different style-intervention prompts.

• Appendix Sec. E: Dataset and preprocessing details.

• Appendix Sec. F: Implementation and training details
of our method and baselines, including model archi-
tectures, hyperparameters, etc.

A. Background: Generalization and Causality
Let X ∈ X and Y ∈ Y represent input images and cor-

responding segmentation masks. We further assume that
an expert (or oracle) is able to provide correct segmenta-
tion masks Y from observations X alone. In the context
of single-source DG (SDG), we assume that we are given
training pairs from a single domain D0: {(X0

i , Y
0
i )}

n0
i=1,

and a fixed set of target domains D1, . . . , DN . Each dataset
De contains independent and identically distributed (i.i.d.)
samples from some probability distribution P (Xe, Y e).
We aim to obtain an optimal predictor f to enable out-
of-distribution (OOD) generalization. In particular, f is
trained on D0 such that f minimizes the worst case risk
Re(f) := EXe,Y e [ℓ(f(Xe), Y e)] for any given target do-
main De:

ROOD(f) = max
e∈{1,...,N}

Re(f). (7)

Arjovsky et al. [2] demonstrate that an invariant predictor
would obtain an optimal solution for Eq. (7):

Definition 1 ( [2]). A data representation Φ : X → H elic-
its an invariant predictor w ◦ Φ across environments (do-
mains) E if there is a classifier w : H → Y simultaneously
optimal for all environments, that is,

w ∈ arg min
w̄:H→Y

Re(w̄ ◦ Φ) for all e ∈ E .

Arjovsky et al. [2] propose an Invariant Risk Minimiza-
tion (IRM) algorithm to obtain this invariant solution from
multiple domains and show that this solution is optimal if
and only if it uses only the direct causal parents of Y in the
corresponding structural causal model (SCM) [42]. In this
work, we demonstrate how to achieve this optimal solution
given a single source domain.

We extend common assumptions [31, 40] on the data
generative process from a causal perspective by allowing an
additional causal relation from content to style as proposed
in [59]:

C := gC(Uc),

S := gS(C,Us),

X := gX(C, S),

Y := gY (C),

(8)

where C denotes the latent content variable, S denotes the
latent style variable, X ∼ pX is an observed input variable,
Y is the observed segmentation mask, (Uc, Us) ∼ puc

×pus

are independent exogenous variables, and gC , gS , gX , gY
are deterministic functions. We assume that different do-
mains are generated via an intervention on the style variable
S.

Under the SCM described above (Eq. (8)), von Kügelgen
et al. [59] theoretically prove that if the augmented pairs
of views (X,X+) in contrastive methods are generated un-
der the principle of a ”soft” intervention on S, then the In-
foNCE [39] objective combined with an encoder function Φ
(e.g., neural network) identifies the invariant content C par-
tition in the generative process described above (Eq. (8)):

LInfoNCE = −EX∼pX

[
log

exp(sim(ν, ν+)/τ)∑
X−∈N exp(sim(ν, ν−)/τ)

]
,

(9)
where ν = Φ(X), sim(·, ·) is some similarity metric (e.g.,
cosine similarity), τ is a temperature parameter, and X− are
negative pairs.

In real-world applications, direct intervention on the
style variable is infeasible as it is unobserved. For instance,
in medical imaging, this would require scanning the same
patient using different imaging modalities multiple times
under controlled conditions—a process that is often imprac-
tical for acquiring training data. However, Ilse et al. [19]
introduce the concept of intervention-augmentation equiv-
ariance, formally demonstrating that data augmentation can
serve as a surrogate tool for simulating interventions:

Definition 2 ( [19]). The causal process gX is intervention-
augmentation equivariant if for every considered stochas-
tic data augmentation transformation aug(·) on X ∈ X we
have a corresponding noise intervention do(·) on S such
that:

aug(X) = gX(do(S = s), c). (10)



B. Visualizations of Ablation Study

We conduct an ablation study on the LSS task
(CT→MRI) to investigate the efficacy of the Style Swap
technique [22] in the main paper. This technique involves
two steps: first, fine-tuning the pretrained Stable Diffu-
sion (SD) U-Net (UB) on the source domain using Dream-
Booth [49] to obtain an instance-tuned SD U-Net UD0 , and
then train the ControlNet [65] with UD0 so that it can focus
on learning to inject image conditions into the generation
process rather than domain information from D0. Specifi-
cally, we compare this method to directly training the Con-
trolNet with UB , omitting the instance fine-tuning stage
with DreamBooth.

To further illustrate this point, we visualize the images
generated by UB using two versions of ControlNet: one
trained with UD0 (fine-tuned on D0 with DreamBooth) and
another trained with UB from the original SD model, using
the same style-intervention prompt. As shown in Fig. 7, im-
ages generated using ControlNet trained directly with UB

on D0 (top row) with the prompt ”sagittal lumbar spine
MRI” retain characteristics of CT modality rather than MRI.
However, these images appear darker than typical CT im-
ages, which is more characteristic of MRI, indicating partial
intervention on the style variable.

Conversely, images generated using the ControlNet
trained with instance-fine-tuned UD0 (bottom row) exhibit
the appearance of MRI images rather than CT, demonstrat-
ing the effectiveness of style variable intervention through
prompting when using the Style Swap technique.

C. Visualizations of Predicted Segmentation
Masks

We present additional visualizations of segmentation
results from our method and other domain generaliza-
tion (DG) approaches for the AS, LSS and LS tasks
in Fig. 8, Fig. 9 and Fig. 10, respectively. The first two
columns display source and target domain images, illustrat-
ing the domain shift. Consistent with our main findings,
these visualizations demonstrate that our method consis-
tently produces superior segmentation masks in the unseen
target domain. Notably, the generated masks exhibit not
only higher accuracy but also enhanced spatial continuity
of the foreground classes.

D. Visualizations of Diffusion-generated Aug-
mentations

To demonstrate the effectiveness of our diffusion-based
style intervention, we provide visualizations of images gen-
erated by our controlled diffusion model for the AS, LSS
and LS tasks in Fig. 11, Fig. 12 and Fig. 13, respectively.
These visualizations illustrate that our diffusion-based aug-
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Style-intervened
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Figure 7. Visualization results on diffusion-based style interven-
tion for LSS task (CT→MRI). The first and second column show
the image conditions (i.e., segmentation masks) and the corre-
sponding source images, respectively. The third column shows
the style-intervened images using the ControlNet trained direcly
with pretrained SD U-Net (i.e., no instance fine-tuning stage using
DreamBooth). The forth column shows the style-intervened im-
ages using the ControlNet trained with instance-fine-tuned U-Net.
Both of them are generated using the style-intervention prompt
”sagittal lumbar spine MRI”.

mentation strategy successfully leverages the rich genera-
tive prior of the SD model, which has been trained on a
large-scale medical imaging dataset comprising scans from
diverse anatomies and imaging modalities. Our method
performs comprehensive intervention on the style variable
while preserving the content. These strong augmentations
are crucial for extracting content features using contrastive
learning.

E. Dataset And Preprocessing Details
We evaluate our method on three cross-modality seg-

mentation tasks: AS, LSS and LS tasks. For the AS task,
we have 20/10 volumes for train/test CT data and 40/20 vol-
umes for train/test MRI data. For the LSS task, we ran-
domly split all datasets into approximately 90% train / 10%
test, resulting in 117/15 train/test volumes for CT , 182/20
volumes for MRI and 350/50 images for X-Ray. For the
LS task, we use the split proposed in the original paper [63]
for CT data, which contains 36 volumes for training and
24 volumes for testing. For X-Ray scans, we first perform
quality control (QT) on both images and labels. We filter
out the cases where images are not X-Ray scans (e.g., some
scans are axial slices of CT scans) and/or labels contains no
foreground or a rectangle foreground. After the QT, we ran-
domly split the dataset into approximately 90% train / 10%
test, resulting in 5409/601 train/test images. We adopt the
preprocessing steps from [40] for all 3D volume data.



The common augmentations applied to all methods in-
clude affine transformations, elastic deformations, bright-
ness and contrast adjustments, gamma corrections, and ad-
ditive Gaussian noise.

F. Implementation Details
F.1. Loss Hyperparameters

The hyperparameters for weighting different losses
across all methods are presented in Tab. 7. All the parame-
ters are selected based on a grid search over the range indi-
cated in the ”values” column.

Table 7. Summary of hyperparameter optimization ranges for each
method.

Method Parameter Values Description

Ours
λsrc {0.1, 1} Source image seg. loss

λsty {0.1, 1} Style-intervened image
seg. loss

λcontrast {1, 10} InforNCE regularization

RandConv [62] λsrc {0.1, 0.5, 1} Source image seg. loss
λaug {0.1, 0.5, 1} Augmented image seg. loss

CSDG [40]
λsrc {0.1, 0.5, 1} Source image seg. loss
λaug {0.1, 0.5, 1} Augmented image seg. loss
λkl {1, 10} KL-DIV regularization

SLAug [56] λgla {0.1, 0.5, 1} Global location-scale
augmentation seg. loss

λsbf {0.1, 0.5, 1} Saliency-balancing fused
augmentation seg. loss

F.2. Baselines

MIXSTYLE: We implement MixStyle [70] using the
authors’ provided code1. To accommodate MixStyle’s re-
quirement for multiple source domains, we employ our
diffusion-based augmentation to synthesize novel training
domains with varied appearances across imaging modali-
ties. We adopt the hyperparameters from the original im-
plementation: mixing probability p = 0.5, Beta distribution
parameter α = 0.1, and ”random” mixing method. Style
mixing is applied twice after the first and second double-
convolution blocks of the U-Net [48] encoder.

DUALNORM: We use the original implementation of
Dual-Normalization [71]2. For each training image, we
generate two source-similar and three source-dissimilar
augmentations using nonlinear Bézier transformations. We
use the default control points to define the Bézier curves for
both source-similar and source-dissimilar augmentations,
with 1000 time steps in both cases.

CSDG: We adopt the model architecture from the orig-
inal CSDG implementation [40]3. For the global inten-

1https : / / github . com / KaiyangZhou / mixstyle -
release

2https://github.com/zzzqzhou/Dual-Normalization
3https : / / github . com / cheng - 01037 / Causality -

Medical-Image-Domain-Generalization

sity non-linear augmentation (GIN) module, we use 4 con-
volutional layers and 2 intermediate layers, with ”Frobe-
nius” normalization after the final layer. The interventional
pseudo-correlation augmentation (IPA) module uses blend-
ing parameters ϵ = 0.3 and ξ = 1e−6, with control point
spacing of 32, downsample scale of 2, and interpolation or-
der of 2. Control point parameters are initialized using a
Gaussian distribution.

RANDCONV: We implement RandConv [62] based on
the CSDG implementation [40], removing the IPA module
to generate augmentations using only randomly-initialized
convolutional layers. We adopt the same GIN module hy-
perparameters as CSDG.

SLAUG: We use the model architecture and augmen-
tation from the original SLAug implementation [56]4. For
the non-linear Bézier transformation, we set the background
threshold to 0.01 and use 100,000 time steps. We initialize
4 control points based on the input image’s intensity values,
and gradually add another two points by uniformly sample
a random value between the first and last elements of the
current point array. The probability of random inversion is
set to 0.5. For saliency-based fusion, we use a 2D B-spline
kernel with interpolation order 2 and grid size 3.

F.3. Diffusion-based Augmentation

We implement DreamBooth [49] and ControlNet [65]
using the HuggingFace Diffusers library5. During the sam-
pling process, we adopt the UniPC sampler to accelerate the
generation with 20 steps [69].

4https://github.com/Kaiseem/SLAug?tab=readme-
ov-file

5https://github.com/huggingface/diffusers
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Figure 8. Additional visualization results on AS task of different methods. First two rows: “CT to MRI” task; Last two rows: “MRI to CT”
task.
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Figure 9. Additional visualization results on LSS task of different methods. First two rows: “CT to MRI” task; Last two rows: “MRI to
CT” task.
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Figure 10. Additional visualization results on LS task of different methods. First two rows: “CT to X-Ray” task.
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Figure 11. Visualization results of diffusion-based style intervention for the AS task. The top two rows show the ”CT to MRI” task, while
the bottom two rows display the ”MRI to CT” task. The left columns present (a) the image conditions (i.e., segmentation masks) and (b)
the corresponding source images. The right columns (c-f) show the style-intervened images generated using specific style-intervention
prompts. For the first row: ”axial liver left kidney right kidney spleen MRI”; second row: ”axial liver spleen MRI”; third row: ”axial liver
left kidney right kidney spleen CT”; and fourth row: ”axial liver left kidney right kidney CT”.
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Figure 12. Visualization results of diffusion-based style intervention for the LSS task. The first two rows demonstrate the ”CT to MRI”
task, while the last two rows show the ”MRI to CT” task. Columns on the left display (a) the image conditions (i.e., segmentation masks)
and (b) the corresponding source images, respectively. For the first two rows (CT to MRI task), the right columns show style-intervened
images generated using the following prompts: (c-d) ”sagittal lumbar spine T1-MRI”; (e-f) ”sagittal lumbar spine T2-MRI”; and (g-h)
”sagittal lumbar spine X-ray”. For the last two rows (MRI to CT task), the right columns present style-intervened images generated using
these prompts: (c-f) ”sagittal lumbar spine CT”; and (g-h) ”sagittal lumbar spine X-ray”.
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Figure 13. Visualization results of diffusion-based style intervention for the LS task. The top two rows show the ”CT to X-Ray” task. The
left columns present (a) the image conditions (i.e., segmentation masks) and (b) the corresponding source images. The right columns (c-f)
show the style-intervened images generated using style-intervention prompt:”chest CT left lung right lung”.


