
[Supplementary] RD-DPP: Rate-Distortion Theory Meets Determinantal Point
Process to Diversify Learning Data Samples

A. Proof of Theorem 1

Proof. To prove Theorem 1, we need to show that
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cause equality (a) is the definition of RD, and (c) is proven
to be the normalization term of DPP. Recall the data matrix
is Z ∈ Rd×n. The Singular Value Decomposition (SVD) of
Z is

Z = Ud×dSd×nV
⊤
n×n, (1)

where U and V are unitary, and the diagonal elements of
S are the singular values of Z. Suppose the rank of Z
is r meaning that the first r diagonal elements of S are
greater than 0. The rest of the diagonal elements and all
off-diagonal elements are zero. Hence,

ZZ⊤ = USV⊤VS⊤UT = U(SS⊤)UT , (2)

ZTZ = VSU⊤US⊤VT = V(S⊤S)VT . (3)

Since U(SS⊤)UT and V(S⊤S)VT are the SVD decom-
position of ZZ⊤ and Z⊤Z, they have the same non-zero
singular values. Also, ZZ⊤ and ZZ⊤ are positive semi-
definite (PSD), which implies that their eigenvalues and sin-
gular values are the same. Therefore,
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where λi is the ith singular value of ZZ⊤ or Z⊤Z. There-
fore, Eqs. 2 and 4 are equal.

B. Packet Preparation and Experiment Setup

B.1. Packet Preparation

In practical systems, the data is transmitted in the form
of packets, which may result in an extreme non-i.i.d sce-
nario. In our experiment, we assume each packet contains
the same number of samples. We also assume data from the
same packets are very similar, and we do not operate the
intra-packet (i.e. any operations in a packet, such as permu-
tation of the order).

To generate packets with this assumption, we first use the
entire training set to train a random neural network. Then,
use their representation from this trained network to per-
form K-means clustering to generate 100 clusters. Noting
that generally, the number of samples in each cluster is not
the same. Thus, in each experiment, we sample the same
number of samples from each cluster (e.g., 64 for MNIST
and FMNIST) to encapsulate into a packet, and naturally,
we have a total of 100 packets for transmission. We do a
similar preparation for CIFAR10 (a total of 100 packets and
each packet contains 200 samples) and UCI datasets (a to-
tal of 60 packets and each packet contains 5 samples). The
composition of some exemplary packets is shown in Fig. 1.

We define the feature of each packet as follows, which is
in a relatively fine-grained way and invariant to the order of
samples,
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where Ci
j denotes the index set of class j in packet Xi, and
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ze ∈ Rd denotes the averaged features of class

j. We normalize the obtained vector to have ∥f(Xi)∥ = 1.

B.2. Training Detail

We set ε2 = 0.5 in Eqs. (16) for all experiments.
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Figure 1. The visualization of cluster-based data splitting. Each
color denotes a class.

B.2.1 MNIST and FMNIST

We set K = 5, ϕ0 = 2. The network architecture for
MNIST and FMNIST is presented in Table 1.

Table 1. The architectural details of the network used in MNIST
and FMNIST.
It outputs the similarity of the input and the target.

Layer Type
Kernel Size
K1 ×K2 × Cin × Cout

Conv2d+ReLU 3× 3× 1× 8
MaxPool2d -
Conv2d+ReLU 3× 3× 8× 16
MaxPool2d -
Conv2d+BatchNorm+ReLU 3× 3× 16× 32
MaxPool2d -
Full-connected 1× 1× 288× 10

All models use an ADAM optimizer with a learning
rate of 1e-3 and a mini-batch size of 64. We train each
model with 100 epochs and report the average of the last
20 epochs’ test accuracy as the final accuracy of the model.
The other experiments use the same way to report.

B.2.2 CIFAR10

The models we are using can be found in https://
github.com/kuangliu/pytorch-cifar.

We set K = 10. We use SGD optimizer in this experi-
ment. We set the learning rate to 0.01, the momentum factor
to 0.9, and the weight decay factor to 5e-4. We also use a
cosine annealing schedule and set Tmax to 200.

B.2.3 UCI Datasets

Here, we set the total number of packets to 60 and each
packet has 5 samples. The selection is initialized with 3
packets, and in each round, we select k = 3 packets by
different approaches.

All datasets are split into 70%-30% training and test sub-
sets and pre-processed by Z-score normalization. We set

K = 3. The learning rate was set to 1e-2, and 1e-3 for
Yeast, Cardiotocography, and Statlog, respectively.

B.2.4 Linear Evaluation Protocol

All models use an ADAM optimizer with a learning rate of
1e-3 and a mini-batch size of 64.

B.3. Datasets Setup of Experiment in Discussion

Rotated MNIST In each sub-task, the digits were rotated
by a pre-defined angle. Each task in Rotation MNIST is
a 10-class classification problem where their labels are the
corresponding digits. Thus, each subsequent task involves
classification on the same ten digits.

MNIST Fellowship The MNIST Fellowship is a com-
bination of MNIST, Fashion MNIST, and KMNIST. Each
sub-task corresponds to one dataset with ten classes of an-
notation. This task has more various domain differences
than the previous one.

C. Additional results

C.1. Experiment on Raw Samples

In the above experiments, we showed the utility of our
dual-mode selection method when applied to the represen-
tation of data samples in lower-dimensional spaces, like
the feature vectors exploited from the latest layers of deep
learning architectures. We can apply our method to raw
samples as well. In this respect, we evaluate our method
using three UCI small datasets: Yeast [1], Cardiotocogra-
phy [2], and Statlog (Landsat Satellite) [3]. Here, we set
the total number of packets to 60 and each packet has 5
samples. The selection is initialized with 3 packets, and
in each round, we select k = 3 packets by different ap-
proaches. Since their samples are limited, we only use lo-
gistic regression as the learning model here. To encounter
the unbalanced data, we use Area Under the Receiver Oper-
ating Characteristic Curve (AUCROC) to assess their per-
formances and present the results (average of 10 runs) in
Table 2. Again, our proposed selection method outperforms
the random selection on Yeast, Cardiotocography, and Stat-
log datasets with 3%-7%, 1%-4%, and 0.5%-4% gain at
transmission budgets 3, 9, and 15, respectively.

Table 2. Performance (AUCROC) on three UCI datasets.

Dataset Yeast Cardio. Statlog.

Budget 3 9 15 3 9 15 3 9 15

RD-DPP 75.16 81.53 84.33 74.08 85.07 91.47 88.92 94.22 95.16
Uncertainty Dec. 73.35 79.81 83.11 67.41 84.59 90.85 82.26 93.68 95.26
Min Margin Dec. 71.29 75.97 81.36 67.57 75.9 83.42 84.13 86.48 93.9
Rand 68.15 77.62 79.78 72.51 81.9 86.61 84.42 89.89 94.64

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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