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1. Comparison of Sequential Modelling

We provide the illustration in Fig. 1 to showcase the dif-
ference between the proposed Snake Bi-Directional Mod-
elling and simple sequential modelling. Tab. 1 showcases
the quantitative results on CelebA-HQ in 40%− 60% mask
ratio to compare with other optimizations of the SSM-based
sequential modelling [1,5,6], demonstrating our superiority
across all metrics.

Table 1. Comparison of different SSM-based modelling.

Mask PSNR ↑ SSIM↑ L1↓ FID↓ LPIPS↓
2-D SSM [1] 24.1153 0.7877 3.0950 5.8556 0.1672
VMamba [5] 24.1409 0.8031 2.9168 5.9508 0.1739
U-Mamba [6] 24.2077 0.8119 2.7440 5.6034 0.1466

Ours 24.4805 0.8240 2.6389 5.5972 0.1368

2. Experimental Details

Image Inpainting Except where specified differently, all
experiments are conducted on a single Nvidia A100 GPU.
We adopt the following set of parameters for our experi-
ments: a batch size of 6 and a patch size of 256× 256. We
use Adam (β1 = 0.9, β2 = 0.999) optimizer with learn-
ing rate = 1e−4. To achieve superior inpainting outcomes,
we optimize our SEM-Net with the loss combination of
Ltotal = λ1L1 + λ2Lstyle + λ3Lperc + λ4Ladv , where
λ1 = 1, λ2 = 250, λ3 = 0.1, λ4 = 0.001. L1 is the pixel-wise
reconstruction loss, Lstyle is style loss, Lperc is the percep-
tual loss, and Ladv is the adversarial loss. We define the Igt
as the ground truth, Iout is the completed image, G is the
SEM-Net and D is the discriminator. The formulation for
each loss is shown below:

Lrec = E
[
∥Iout − Igt∥1

]
, (1)

Lperc = E

[∑
i

∥ϕi (Iout)− ϕi (Igt)∥1

]
, (2)

Lstyle = E

[∑
i

∥(ψi (Iout)− ψi (Igt))∥1

]
, (3)

Ladv = min
G

max
D

EIgt
[logD (Igt)] + EIout

log [1−D (Iout)] ,

(4)
where ϕi(·) indicates the activation map from the i-th pool-
ing layer of VGG-16. ψi(·) = ϕi(·)Tϕi(·) denotes the
Gram matrix. The loss combination of Ltotal = λ1L1 +
λ2Lstyle + λ3Lperc + λ4Ladv , where λ1 = 1, λ2 = 250, λ3
= 0.1, λ4 = 0.001.
Image Deblurring The image deblur task is formulated as
Iout = Iin+SEM−Net(Iin), where Iin is the blurred im-
age, Iout is the clear image. To train our deblurring model,
we follow [2] to use a joint loss consisting of a reconstruc-
tion loss and a frequency loss. The formulation for each
loss is shown below:

Lrec = E
[
∥Iout − Igt∥1

]
, (5)

Lfrequency = E
[
∥F (Iout)− F (Igt)∥1

]
, (6)

where F (·) is the Fast Fourier transform. The total loss for
image deblurring is Ltotal = Lrec + 0.1×Lfrequency .

3. Additional Quantitative Results
Further ablation studies are showcased in the section.

All models used in these experiments are trained for 30K
iterations on CelebA-HQ dataset with a half-scaled SEM-
Net. We also present the full tables for ablation study 3
and the comparison between our proposed SMB with other
transformer-based methods 4 across all mask ratios.

3.1. Ablation study for Snake Bi-Directional Mod-
elling (SBDM)

To further evaluate each design in the proposed Snake
Bi-Directional Modelling (SBDM) module, we conduct the
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Figure 1. Comparison between (a) the proposed Snake Bi-
Directional Modelling - Sequential (SBDM-S) and (b) the simple
sequential approach. Our SBDM implicitly models bi-directional
positional context by horizontally and vertically scanning the to-
kens, while the snake-shape design preserves the relations within
adjacent tokens.

experiment by ablating each component. As shown in
Tab. 4. Bi-D means horizontal and vertical direction mod-
elling. The model without Bi-D only contains single hor-
izontal direction modelling. Snake denotes the Snake-like
Sequence Modelling. The model without Snake contains
simple sequential modelling. We notice that the proposed
snake-like design and bidirectional design overall improve
the performance. An interesting observation is that at the
largest mask ratio, individually integrating each of the two
designs degrades the FID. But the FID at the largest mask
ratio gets better when both snake-like design and bidirec-
tional design are used together. This may indicate that when
the damaged region is large and challenging, both comple-
mentary methods need to be used simultaneously to achieve
better inpainting results without fully convergent training.

3.2. Importance of the Last Skip Connection

To preserve the detailed texture and structure feature
from the first level of the encoder, we refrain from reduc-
ing the channel capacity after the last skip connection. The
comparison of these two approaches (i.e., with reducing
channel capacity and without reducing channel capacity via
a 1× 1 convolution) is shown in Tab. 5.

4. More Qualitative Results

4.1. More Image Inpainting Comparisons

We showcase more qualitative image inpainting results
on both CelebA-HQ and Places2 datasets in Fig. 2 and
Fig. 3. From Fig. 2, we observe that SEM-Net successfully
inpaints the masked eye by effectively capturing long-range
dependencies from the visible eye, making the inpainted
eye has a significantly more consistent shape and colour
with finer-grained features. In Places2, SEM-Net generates
fewer artefacts and more coherent structures, ensuring con-
textual consistency of image texture and structure.

4.2. Higher Resolution Visualisation

We provide higher resolution image inpainting results
to examine the scalability and generalisability of SEM-Net
trained on 256 × 256 Places2 images in processing unseen
images of large resolution (2560× 1920 and 1920× 2560),
which is showcased in Fig. 4 and 5. In our verification,
SEM-Net is able to inpaint images with 2k+ resolutions
without a significant loss in image quality or coherence.

4.3. More Image Motion Deblurring Comparisons

we showcase more qualitative image motion deblurring
results on GoPro (Fig. 6) and HIDE (Fig. 7) datasets to fur-
ther evaluate the image representation learning capability
and generalisation ability of SEN-Net. Both figures demon-
strate that our model recovers more structural details and
is more sharper and visually closer to the groundtruth than
other methods.



Table 2. Ablation studies of each component trained on CelebA-HQ [4].

Net Components 0.01%-20% 20%-40% 40%-60%

MB FN [11] SEFN SBDM PE PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) 33.5812 0.9537 0.5385 1.4877 0.0513 25.8971 0.8527 1.9786 4.4025 0.1480 21.6134 0.7308 4.1254 8.1732 0.2464
(b) ✓ ✓ 33.7596 0.9604 0.5274 1.4660 0.0442 26.0679 0.8729 1.8220 4.3759 0.1261 21.7828 0.7587 3.9117 8.0742 0.2227
(c) ✓ ✓ 34.1085 0.9624 0.5059 1.4147 0.0420 26.3048 0.8755 1.7299 4.3664 0.1187 22.0510 0.7682 3.7649 7.9871 0.2132
(d) ✓ ✓ ✓ 33.8899 0.9614 0.5151 1.4534 0.0415 26.2217 0.8767 1.7635 4.3674 0.1181 21.9064 0.7653 3.7679 8.0214 0.2102
(e) ✓ ✓ ✓ 34.1184 0.9624 0.5043 1.4010 0.0408 26.3452 0.8776 1.7155 4.3559 0.1174 22.0926 0.7692 3.7634 7.9174 0.2091
(f) ✓ ✓ ✓ ✓ 33.9455 0.9616 0.5128 1.3751 0.0412 26.4037 0.8790 1.7303 4.3004 0.1193 22.1776 0.7708 3.6747 7.9125 0.2095
(g) ✓ ✓ ✓ ✓ 34.1437 0.9627 0.4986 1.3548 0.0403 26.4728 0.8808 1.6947 4.2718 0.1145 22.1780 0.7725 3.6274 7.8915 0.2038

Table 3. Comparison between our proposed SMB with transformer-based methods.

Input Model 0.01%-20% 20%-40% 40%-60%

Resolution PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

256*256
CSA [11] 33.5878 0.9595 0.5451 2.7514 0.0462 25.9348 0.8712 1.8644 5.1404 0.1300 21.5362 0.7543 4.0471 8.1652 0.2326
SSA [3] Out of memory Out of memory Out of memory

SMB 33.9455 0.9616 0.5128 1.3751 0.0431 26.4037 0.8790 1.7303 4.3004 0.1193 22.1776 0.7708 3.6747 7.9125 0.2095

64*64 SSA [3] 32.0110 0.9308 0.7354 0.8345 0.0375 24.5320 0.7121 3.3047 2.8991 0.1035 20.1655 0.7265 5.2256 5.5547 0.1702
SMB 32.0218 0.9437 0.7120 0.8152 0.0351 24.6112 0.7214 3.1575 2.7503 0.1022 20.1716 0.7352 5.1332 5.3158 0.1617

Table 4. Ablation study of each component trained on CelebA-HQ [4].

Net Components 0.01%-20% 20%-40% 40%-60%

MB Bi-D Snake PE SEFN PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) ✓ ✓ ✓ 34.1114 0.9624 0.5046 1.4134 0.0418 26.3305 0.8769 1.7231 4.3533 0.1186 22.0760 0.7688 3.7643 7.9868 0.2125
(b) ✓ ✓ ✓ ✓ 34.1428 0.9625 0.5016 1.3560 0.0416 26.4725 0.8802 1.7078 4.2751 0.1178 22.1351 0.7715 3.6742 8.0395 0.2078
(c) ✓ ✓ ✓ ✓ 34.1172 0.9624 0.5040 1.3564 0.0419 26.4619 0.8793 1.7105 4.2830 0.1185 22.1720 0.7692 3.6890 8.0372 0.2108
(e) ✓ ✓ ✓ ✓ ✓ 34.1437 0.9627 0.4986 1.3548 0.0403 26.4728 0.8808 1.6947 4.2718 0.1145 22.1780 0.7725 3.6274 7.8915 0.2038

Table 5. Ablation study of using 1× 1 convolution after the last skip connection.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

w 1× 1 conv 33.9158 0.9614 0.5060 1.4503 0.0414 26.2481 0.8753 1.7605 4.3794 0.1185 22.0311 0.7700 3.7580 8.0976 0.2184
w/o 1× 1 conv (ours) 34.1437 0.9627 0.4986 1.3548 0.0403 26.4728 0.8808 1.6947 4.2718 0.1145 22.1780 0.7725 3.6274 7.8915 0.2038
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Figure 2. More visualisations (256× 256) on the CelebA-HQ dataset. Please zoom in to see details.
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Figure 3. More visualisations (256× 256) on the Places2 dataset. Please zoom in to see details.



GT Masked Input Output

Figure 4. The example of generalisation to real-world high-resolution images of 1920× 2560.
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Figure 5. The example of generalisation to real-world high-resolution images of 2560× 1920.
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MAXIM [10] Restormer [11] Stripformer [9] SEM-Net (Ours)

Blurry Image Reference DBGAN [13] MPRNet [12]

MAXIM [10] Restormer [11] Stripformer [9] SEM-Net (Ours)

Blurry Image Reference DBGAN [13] MPRNet [12]

MAXIM [10] Restormer [11] Stripformer [9] SEM-Net (Ours)

Blurry Image Reference DBGAN [13] MPRNet [12]

MAXIM [10] Restormer [11] Stripformer [9] SEM-Net (Ours)

Figure 6. Image motion deblurring comparisons on GoPro [7]. Our method generates sharper results with higher visual fidelity.
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Blurry Image Reference MAXIM [10]

Restormer [11] Stripformer [9] SEM-Net (Ours)

Blurry Image Reference MAXIM [10]

Restormer [11] Stripformer [9] SEM-Net (Ours)

Figure 7. Image motion deblurring comparisons on HIDE [8]. Our methods generates sharper results with higher visual fidelity.
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