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We provide additional implementation details, more ab-
lation studies, the analysis of the computational complexity,
and the discussion of the limitations of ORFormer in this
supplementary document.

1. Additional Implementation Details
1.1. Model Training

We employ the Adam optimizer [5] along with the cosine
annealing warm restart scheduler proposed by Loshchilov et
al. [9] in all our experiments. The number of iterations for
the first restart is set to 5, and the increase factor is set to 2.

The entire training process is carried out on a single
NVIDIA GTX 1080 Ti with 11GB of memory. Specifically,
for the quantized heatmap generator, we set the learning rate
to 0.0007 with a batch size of 128. For deriving the pro-
posed ORFormer, we use a learning rate of 0.0001 with a
batch size of 64. For the landmark detection models, we set
the learning rate to 0.001 with a batch size of 16.

1.2. Heatmap Definition

ORFormer aims to identify non-visible regions and re-
cover missing features, enabling the generation of high-
fidelity heatmaps resilient to challenging scenarios like oc-
clusions, extreme lighting conditions, or extreme head ro-
tations. This capability assists facial landmark detection
(FLD) methods in maintaining robustness in such challeng-
ing scenarios.

To support FLD methods effectively and efficiently, we
employ heatmaps on facial edges (contours) as constraints
by following a related approach proposed by Wu et al. [15].
Utilizing edge heatmaps alone can reduce computational
costs while providing sufficient information for FLD meth-
ods.

Heatmap Generation. As illustrated in Fig. 1, for a given
face image I ∈ Rh×w×3 and its ground-truth landmark

*means equal contribution

annotations L = {li}NL−1
i=0 , we divide L into NE subsets

Lj ⊂ L, j = 0, ..., NE − 1 to represent the facial edges,
such as the cheek and eyebrow. Here, NL represents the
number of landmarks per face, and NE denotes the number
of edges per face. Each facial edge Lj is utilized to interpo-
late the edge line, thereby forming the binary edge map Bj

of the same size as the face image. Subsequently, a distance
transform is applied to Bj , computing the nearest distance
to the edge line for every pixel, resulting in the formation
of the distance map Mj , which is also of the same size as
the face image. Finally, we obtain the ground-truth edge
heatmap Ĥj used to supervise the quantized heatmap and
ORFormer by the following formula:

Ĥj(x, y) =

{
exp(−Mj(x,y)

2

2σ2 ), if Mj(x, y) < 3σ,

0, otherwise.
(1)

σ represents the standard deviation of the values in the dis-
tance map Mj .

Index Mapping. Our experiments are conducted on three
distinct datasets: WFLW [15], COFW [1], and 300W [11].
As illustrated in Fig. 2, the number of landmarks varies
across these datasets, leading to differences in the edge
heatmap. Consequently, we provide the index mappings be-
tween the landmarks and the facial edges in the following.

For the WFLW dataset, with NL equal to 98 and NE

equal to 15, the index mapping is given as follows:

Edge 0: [0-32]
Edge 1: [33-37]
Edge 2: [38-41,33]
Edge 3: [42-46]
Edge 4: [46-49,50]
Edge 5: [51-54]
Edge 6: [55-59]
Edge 7: [60-64]
Edge 8: [64-67,60]
Edge 9: [68-72]
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Figure 1. Generation flow of the ground-truth edge heatmap.

WFLW 300W COFW

Figure 2. Visualization of the ground-truth landmarks in different datasets.

Method (Publication) Backbone WFLW-Full COFW 300W (NMEio↓)

NMEio↓ FR10%↓ AUC10%↑ NMEip↓ Full Comm. Chal.

LAB (CVPR18) [15] Hourglass 5.27 7.56 0.532 - 3.49 2.98 5.19
Wing (CVPR18) [2] ResNet-50 4.99 6.00 0.550 5.44 - - -
HRNet (CVPR19) [12] HRNet-W18 4.60 4.64 - - 3.32 2.87 5.15
AWing (ICCV19) [14] Hourglass 4.36 2.84 0.572 4.94 3.07 2.72 4.52
LUVLi (CVPR20) [6] DU-Net 4.37 3.12 0.577 - 3.23 2.76 5.16
ADNet (ICCV21) [3] Hourglass 4.14 2.72 0.602 4.68 2.93 2.53 4.58
PIPNet (IJCV21) [4] ResNet-101 4.31 - - - 3.19 2.78 4.89
HIH (arXiv21) [7] Hourglass 4.08 2.60 0.605 4.63 3.09 2.65 4.89
SLPT (CVPR22) [16] HRNet-W18 4.14 2.76 0.595 4.79 3.17 2.75 4.90
RePFormer (arXiv22) [8] ResNet-101 4.11 - - - 3.01 - -
†STAR (CVPR23) [18] Hourglass 4.03 2.32 0.611 4.62 2.90 2.52 4.46
LDEQ (CVPR23) [10] Hourglass 3.92 2.48 0.624 - - - -

ORFormer (Ours) Hourglass 3.86 1.76 0.622 4.46 2.90 2.53 4.43

Table 1. Quantitative comparison with state-of-the-art methods on WFLW, COFW, and 300W. NME is reported for all datasets. For
WFLW, FR and AUC with a threshold of 10% are included. The best and second best results are highlighted. The † symbol represents the
results we reproduced.

Edge 10: [72-75,68]
Edge 11: [76-82]
Edge 12: [82-87,76]
Edge 13: [88-92]
Edge 14: [92-95,88]

For the 300W dataset, with NL equal to 68 and NE equal
to 13, the index mapping is given as follows:

Edge 0: [0-16]
Edge 1: [17-21]

Edge 2: [22-26]
Edge 3: [27-30]
Edge 4: [31-35]
Edge 5: [36-39]
Edge 6: [39-41,36]
Edge 7: [42-45]
Edge 8: [45-47,42]
Edge 9: [48-54]
Edge 10: [54-59,48]
Edge 11: [60-64]



Method Architecture Loss Functions WFLW (NME↓)

Heatmap Landmark Full Occ.

ADNet [3] HGNet AWing ADL 4.14 5.06
HGNet+ORFormer AWing ADL 4.06 4.94

(+1.9%) (+2.4%)

†STAR [18] HGNet AWing STAR 4.03 4.82
HGNet+ORFormer AWing STAR 3.92 4.66

(+2.7%) (+3.3%)

Table 2. Ablation study of enabling ORFormer for landmark
detection on WFLW. NME is reported. The † symbol represents
the results we reproduced. The relative performance improvement
is calculated based on HGNet.

Edge 12: [64-67,60]

For the COFW dataset, with NL equal to 29 and NE

equal to 14, the index mapping is given as follows:

Edge 0: [0,4,2]
Edge 1: [2,5,0]
Edge 2: [1,6,3]
Edge 3: [3,7,1]
Edge 4: [8,12,10]
Edge 5: [10,13,8]
Edge 6: [9,14,11]
Edge 7: [11,15,9]
Edge 8: [18,21,19]
Edge 9: [20,21]
Edge 10: [22,26,23]
Edge 11: [23,27,22]
Edge 12: [22,24,23]
Edge 13: [23,25,22]

2. More Experiments
2.1. Comparisons with State-of-the-Art Methods

Due to limited space in the main paper, we provide the
full experimental table here, as shown in Table 1. We also
provide more samples for visualization of the output land-
mark, as shown in Figure 3.

2.2. Ablation Study

2.2.1 Effectiveness of ORFormer

Due to limited space in the main paper, we provide more
samples for visualization of the output heatmap of OR-
Former, as shown in Figure 4.

2.2.2 Effectiveness of ORFormer’s Heatmaps.

To demonstrate the effectiveness of ORFormer for
heatmaps generation for facial landmark detection, we com-
pare it to the methods that utilize the same baseline net-
work: ADNet [3] and STAR [18]. The results are presented

Method Distance Function L2 Loss ↓
ORFormer concat{X −M,M −X} 24.86
ORFormer |X −M | 24.43
ORFormer (X −M)2 23.87

Table 3. Quantitative evaluation on different designs of the
distance function of ORFormer’s occlusion detection head. X
represents the image patch embedding and M represents the mes-
senger embedding. The label Occ. Head denotes the proposed
occlusion detection head. The proposed occlusion detection head
is not enabled in the first-row entry. The occlusion-aware cross-
attention component is not enabled here. Results highlighted in
bold represent the best performance. The heatmap regression L2
loss is reported on WFLW.

Method W ’s Design L2 Loss ↓
ORFormer 5× 5 conv. 24.26
ORFormer 3× 3 conv. 24.05
ORFormer Fully connected layer 23.87

Table 4. Quantitative evaluation with different filter sizes of W
in ORFormer’s occlusion detection head. The occlusion-aware
cross-attention component is not enabled here. Results highlighted
in bold represent the best performance. The heatmap regression
L2 loss is reported on WFLW.

in Table 2. By incorporating ORFormer’s output heatmaps
as additional information to the networks, alongside the
same loss functions used by ADNet and STAR, our method
achieves performance gains, especially in the occlusion sub-
set, showing the effectiveness of ORFormer’s heatmap to
existing FLD methods.

2.2.3 ORFormer’s Component

Occlusion Detection Head. As mentioned in the paper,
we incorporate an occlusion detection head in our proposed
ORFormer to identify occluded patches by evaluating the
dissimilarity between the image patch embedding X l+1 and
the messenger embedding M l+1. The patch-specific occlu-
sion map αl+1 = {αl+1

k }m×n−1
k=0 is obtained via

αl+1
k = σ(W l+1 · dist(X l+1

k ,M l+1
k )), (2)

where dist(·, ·) calculates the element-wise squared differ-
ence between the two embeddings, W l+1 represents a fully
connected layer that transforms the embedding returned by
dist into a scalar, and σ(∗) is the sigmoid function ensur-
ing αl+1

k ranges between 0 and 1.
To explore the difference between designs of distance

functions, we compare the heatmap regression quality us-
ing L2 loss with various designs of the distance function, as
shown in Table 3. We observe that employing the squared
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Figure 3. Qualitative comparison with the reproduced baseline method, STAR, on extreme cases from the test set of WFLW. The
ground-truth landmarks are marked in blue, while the predicted landmarks are in red. The green lines represent the distance between the
ground-truth landmarks and the predicted landmarks. Orange ellipses highlight variations between the methods in the challenging areas.
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Figure 4. Qualitative comparison for heatmap generation on WFLW. GT stands for the ground-truth heatmap. For better visualization,
we display the distance heatmap for VQVAE, Codeformer, and ORFormer by computing the pixel-wise L2 distance between their output
heatmaps and the GT heatmap. Brighter areas indicate higher errors. The main area of discrepancy is emphasized within an ellipse to
highlight variations between the methods.

difference as the distance function in the occlusion detection
head yields the best performance. This improvement can be
attributed to the squared difference function’s capability to
impose a larger penalty when there is a large disparity be-

tween the image patch embedding X l+1 and the messenger
embedding M l+1, while still enabling the gradient to prop-
agate continuously.

To explore incorporating more information into OR-



Method Integration Pre-trained Weights Trainable Part NMEio ↓
ORFormer 4.03
ORFormer ✓ ✓ Conv. 4.01
ORFormer ✓ ✓ All 3.94
ORFormer ✓ All 3.86

Table 5. Quantitative evaluation of different integration meth-
ods of ORFormer with Existing FLD Methods The Conv. label
indicates the 1 × 1 CNN block used to merge the heatmap gener-
ated by ORFormer with the feature maps of existing FLD methods.
The first row entry represent reproducing STAR [18] without the
integration with ORFormer. Results highlighted in bold represent
the best performance. The landmark detection NME loss is re-
ported on WFLW.

Method Architecture Loss Functions WFLW (NME↓)

Heatmap Landmark Full Occ.

ADNet [3] HGNet AWing ADL 4.14 5.06
Ours HGNet+ORFormer AWing ADL 4.06 4.94

†STAR [18] HGNet AWing STAR 4.03 4.82
Ours HGNet+ORFormer AWing STAR 3.92 4.66

Ours HGNet+ORFormer L2 NME 3.86 4.57

Table 6. Quantitative evaluation of different loss functions of
the integration of ORFormer with Existing FLD Methods. All
methods utilize the same backbone. Loss functions highlighted
in blue represent the proposed approaches of that work. Results
highlighted in bold represent the best performance. The landmark
detection NME loss is reported on the WFLW dataset. The † sym-
bol represents the results we reproduced.

Former during occlusion detection, we compare the
heatmap regression quality using L2 loss with different filter
sizes of W in Eq. 2, as shown in Table 4. For the convo-
lutional layer, we reshape the embedding back to Rm×n×d

before applying the convolution operation. In contrast, for
the fully connected layer, we pass the embedding one by
one, equivalent to applying a 1 × 1 convolutional layer in
the shape of Rm×n×d. Using a larger filter size for the
convolutional layer allows the occlusion detection head to
consider more information from neighboring embeddings
when detecting occlusion. However, we observe that using
a fully connected layer performs best. We believe this is
because ORFormer operates in the latent space of the quan-
tized heatmap generator, considering one single embedding
in this latent space can provide an appropriate receptive field
for occlusion detection in human faces.

2.2.4 Integration with FLD Methods

With our ORFormer for occlusion detection and feature re-
covery, the quantized heatmap generator can produce high-
quality heatmaps. We integrate these heatmaps as addi-
tional structural guidance into existing FLD methods [3,18].
Specifically, we concatenate the heatmaps with the fea-

Method Param. Self-Att. Cross-Att. Occ. Head Occ.-Aware L2 Loss ↓ NME↓
(M)

VQVAE [13] 1.36 26.72 4.04
CodeFormer [17] 4.32 ✓ 25.13 4.00

ORFormer (Ours)
4.77 ✓ ✓ 24.35 3.99
4.78 ✓ ✓ ✓ 23.87 3.95
4.78 ✓ ✓ ✓ ✓ 20.22 3.86

Table 7. Quantitative evaluation on the proposed components
of ORFormer on WFLW. The heatmap regression L2 loss and he
landmark NME loss are reported.

ture maps in the early stage and merge them with a single
lightweight 1× 1 CNN block.

Way of Integration. To explore the best strategy of in-
tegrating the heatmap produced by ORFormer into existing
FLD methods, we compare the landmark detection accuracy
using NME loss with different integration strategies. The
results are shown in Table 5. The pre-trained weights are
from reproducing STAR [18] with an NME of 4.03. We find
that by only fine-tuning the lightweight CNN block, we gain
little performance with the help of ORFormer’s heatmap.
However, if we fine-tune the entire network or train the en-
tire network from scratch without using pre-trained weights,
we can achieve larger performance gains.

Loss Function. We also explore alternative choices of the
loss function for model integration. As shown in Table 6, by
integrating the output heatmaps of ORFormer into existing
FLD methods [3,18] and using the same loss functions, our
approach achieves improved performance. Moreover, we
obtain the best result using a simple loss function such as
L2 loss for heatmap supervision and NME loss for landmark
supervision. We believe this is because our heatmap defini-
tion differs from ADNet and STAR. While our heatmap is
suitable for L2 loss, their heatmap is defined for the use of
their proposed specific loss functions.

2.3. Computational Complexity of ORFormer

In Table 7, we show the numbers of trainable parame-
ters of ORFormer. Compared to the conventional ViT, OR-
Former enhances ViT to handle occlusions with minimal
overhead, with about 10% more trainable parameters.

Even though ORFormer doubles the token count of a reg-
ular ViT, the patch token and messenger token compute at-
tention scores separately, affecting the computational com-
plexity linearly and thus minimally impacting the inference
time. In Table 8, we integrate our proposed ORFormer into
the state-of-the-art baseline, STAR [18], a 4-stack Hour-
glass network. For fair comparison, we augment the base-
line network with one additional stack to align the number
of trainable parameters. Our method performs favorably
against this augmented baseline with comparable trainable



Method Architecture Param. Mult-Add Infer. Time NMEio ↓
(M) (G) (ms)

†STAR [18] 4-stack HGNet 17 17.4 45 4.03
†STAR [18] 5-stack HGNet 21.5 21.5 63 3.98
Ours 4-stack HGNet+ORFormer 21.8 17.9 53 3.86

(+1.4%) (-20.6%) (-15.9%)

Table 8. Ablation study of computation complexity vs NME
on WFLW. HGNet represents the hourglass network. The relative
increase/improvement is calculated based on 5-stack HGNet. The
† symbol represents the results we reproduced. The inference time
is tested on a single NVIDIA GTX 1080 Ti.

parameters, 20.6% fewer mult-add operations, and 15.9%
less inference time, showing the advantage of ORFormer.

2.4. Limitations
The first limitation is that ORFormer is particularly ef-

fective at handling partially non-visible facial features but
struggles with partially deformed facial features. The sec-
ond limitation is that although ORFormer yields features
robust to occlusion, the capability of our method relies
on a well-trained quantized heatmap generator, which lim-
its its applicability to tasks related to heatmap genera-
tion. In future research, we plan to explore ways to en-
able ORFormer to handle partially deformed facial fea-
tures and extend ORFormer to serve as a general feature
extractor for various computer vision tasks, where par-
tial occlusions detection and feature recovery are essen-
tial, maximizing its impact in the field of computer vision.
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