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Due to the limited space of the main paper, we provide
more experimental results and implementation details in the
supplementary material.

Accuracy of pseudo-labels. Fig. A shows the accuracy of
pseudo-labels as the model adapts. The pseudo-label accu-
racy is high compared to the output accuracy and improves
over time.

Further experimental results. We present the full results
of Tab. 4, Tab. 5, and Tab. 7 in the main paper, as shown in
Tab. A, Tab. B, and Tab. C, respectively.

Implementation details. We provide the full data of the
hyperparameters in Tab. D.
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Figure A. Pseudo-label accuracy (%) on ImageNet-C. We use
DeYO+FATA with ResNet50-GN for this experiment. Exponen-
tial moving average (p = 0.99) is applied.

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Average ∆Perf.
No Adapt 41.31 64.74 74.75 51.71 60.94 63.58 51.3 37.21 73.63 64.94 40.25 75.85 58.35

MEMO [8] 42.18 65.65 75.03 49.94 60.26 62.82 50.31 37.25 72.44 64.81 40.37 76.73 58.15
TENT [6] 41.4 64.74 74.75 51.71 60.89 63.64 51.3 37.16 73.65 65.02 40.21 75.87 58.36
CoTTA [7] 41.28 64.79 71.86 51.71 60.91 63.6 51.3 37.21 72.11 64.94 40.3 70.87 57.57
EATA [3] 41.99 64.83 74.87 51.71 60.96 63.64 51.42 37.82 73.67 65.1 41.03 75.94 58.58

EATA+FATA 42.2 65.74 74.39 53.61 61.66 65.34 53.61 39.11 74.27 67.08 43.09 76.41 59.71 +1.13
SAR [4] 41.37 64.77 74.78 51.67 60.91 63.64 51.34 37.14 73.63 65.02 40.25 75.87 58.37

SAR+FATA 42.02 64.63 74.73 53.32 61.59 64.82 51.63 38.72 73.88 65.51 42.47 76.82 59.18 +0.81
DeYO [2] 41.63 64.7 74.71 51.96 61.07 63.87 51.34 37.71 73.74 65.1 40.62 76.3 58.56

DeYO+FATA 41.74 64.97 74.73 51.96 61.34 63.99 51.55 37.73 73.74 64.94 40.82 76.19 58.64 +0.08

Table A. Image classification results on Office-Home [5]. ResNet50 with GN is used for this experiment. We use the accuracy (%) as the
metric. ∆Perf. is the performance gap between the original method and another version where our method is incorporated.

Method
Noise Blur Weather Digital

Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

No Adapt 17.98 19.84 17.88 19.75 11.35 21.42 24.92 40.43 47.30 33.59 69.28 36.27 18.61 28.40 52.28 30.62
DeYO [2] 39.46 41.90 41.03 22.27 24.11 38.48 37.87 50.51 49.59 1.43 73.17 49.95 41.54 55.96 57.82 41.67

DeYO+FATA (Layer 0) 35.58 38.56 36.51 20.32 17.61 41.07 40.53 48.89 48.40 54.22 71.25 49.74 8.08 55.29 56.76 41.52
DeYO+FATA (Layer 1) 39.84 42.11 40.47 21.84 23.68 39.93 41.17 55.03 50.82 1.09 72.86 51.13 39.57 57.26 57.97 42.32
DeYO+FATA (Layer 2) 39.72 42.77 41.03 21.44 23.04 39.74 42.76 54.51 52.04 0.84 73.57 51.67 45.92 57.89 58.16 43.01
DeYO+FATA (Layer 3) 39.71 42.49 41.37 22.29 24.46 38.90 38.31 51.23 50.02 56.31 73.19 50.03 42.10 55.99 57.79 45.61

Table B. Ablation study on the position of feature augmentation. ResNet50 with GN is used for this experiment.
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DeYO Augmentation loss
Noise Blur Weather Digital

Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

- - 17.98 19.84 17.88 19.75 11.35 21.42 24.92 40.43 47.30 33.59 69.28 36.27 18.61 28.40 52.28 30.62
- FATA loss (Ours) 37.92 39.99 38.70 25.96 22.21 36.06 37.77 51.99 51.33 2.85 73.11 48.83 13.10 53.78 56.73 39.35

✓ - 39.46 41.90 41.03 22.27 24.11 38.48 37.87 50.51 49.59 1.43 73.17 49.95 41.54 55.96 57.82 41.67
✓ Simple Aug. 38.19 41.31 39.31 21.64 23.43 36.96 34.93 48.72 46.50 1.14 72.90 49.19 37.43 55.39 57.39 40.30
✓ MSE loss 0.22 0.46 0.57 0.88 0.89 0.57 2.15 2.00 7.49 8.18 61.78 6.37 0.83 2.19 3.52 6.54
✓ FATA Loss (Ours) 39.71 42.49 41.37 22.29 24.46 38.90 38.31 51.23 50.02 56.31 73.19 50.03 42.10 55.99 57.79 45.61

Table C. Ablation study on the augmentation loss. ResNet50 with GN is used for this experiment.

Parameter Meaning Value
i Layer to inject the feature augmentation 3 (ResNet50), 11 (ViT-B)
E0 Entropy threshold for sample filtering 0.5 lnC

Eω Normalization factor for sample weighting 0.4 lnC

σn Standard deviation for the noise 1.0
λEMA Smoothing factor for exponential moving average 0.95
B Default batch size 64
η Learning rate 0.0005 (ResNet50, B = 64)

0.001 (ViT-B, B = 64)
0.00025 (ResNet50, B = 1)
0.000016 (ViT-B, B = 1)

Table D. Hyperparameters for the experiment.

Rationale for replacing variance with standard devia-
tion in Eq. (3). Eq. (3) is derived from Normalization
Perturbation (NP) [1], which is formulated as follows:

z′ = ασc ·
z− µc

σc
+ βµc = αz+ (β − α)µc, (A)

where α, β ∈ RB×C are the random noises sampled from
N(I, σnI), µc, σc are the channel-wise feature mean and
standard deviation, respectively. As formulated by Eq. (3),
NP+ introduces the term δ = Var(µc)/max(Var(µc)) to
control the magnitude of the noises α and β. We replace
variance with standard deviation because the noises are re-
lated to standard deviation σc, not variance, as shown in
Eq. (A).
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