
Supplementary Material for
PTQ4VM: Post-Training Quantization for Visual Mamba

A. Implementation Details

A.1. Quantization Configurations

In this section, we describe the detailed quantization con-
figuration for reproducing PTQ4VM. In the Image Classifi-
cation task, we trained for 10 epochs for W8A8, 50 epochs
for W6A6, and 100 epochs for W4A4. The learning rates
used in our experiments are reported in Table 1S. We de-
noted the learning rate for the smoothing scale s as lr s and
the learning rate for the quantization parameters (step size
∆X and ∆W ) as lr q. Additionally, all models used in the
experiments used pretrained checkpoints provided by the
official repository of Vision Mamba [6], VMamba [4], and
LocalMamba [2].

Vim-Ti Vim-S Vim-B VMamba-T/S/B

lr s 1e-2 1e-3 1e-2 1e-4
lr q 5e-4 5e-4 5e-4 1e-4

LocalVim-T† LocalVim-T LocalVim-S LocalVMamba-S

lr s 1e-2 1e-2 1e-4 1e-4
lr q 5e-4 5e-4 5e-4 1e-4

Table 1S. Learning rates for Image Classification task.

For Object Detection and Instance Segmentation tasks,
we used different learning rates and epochs depending on
the quantization bit-width. For W8A8, we used a learning
rate 1e-5 for both smoothing scale and step sizes, training
for 10 epochs. For W6A6 and W4A4, we used a learning
rate 1e-4 and trained for 50 epochs. As mentioned in our
main manuscript, we used the VMamba-T [4] backbone
trained with the MASK R-CNN 3X [1] MS setting, pro-
vided by the official VMamba repository. We applied quan-
tization only to the backbone for our experiments. Addition-
ally, we cropped the input images to 1280 × 800 to use PTS
in our experiments.

B. Acceleration Kernel

In this section, we provide a more detailed explanation of
the hardware implementation and experiment of PTQ4VM.

B.1. Implementation

The hardware kernel of PTQ4VM is based on CUDA
programming and CUTLASS 3.5 [3], and consists of
four main parts: Activation smoothing, Quantization, INT
GEMM, and Dequantization.

In the Activation smoothing part, we upload activation
smoothing vector to the shared memory of each block in
the Tensor core. We then apply element-wise multiplication
to each row of the activation tensor to perform smoothing.
We can utilize more efficient operation because we apply
multiplication to shared memory uploaded data.

During the Quantization part, we quantize FP16 acti-
vations to INT4/INT8. Weights are not quantized during
this phase because they are already saved and loaded
as INT4/INT8 values. It is noticeable that the smallest
data type of integer in PyTorch [5] is INT8. Therefore,
when performing INT4 quantization, we concatenate
two adjacent quantized values and pack them into INT8
data. The pseudo-code for this process is as follows:
packedData = (data[1] << 4) | (data[0] & 15)

For the INT GEMM part, we utilize CUTLASS Ten-
sor core INT4/INT8 GEMM, as CUTLASS is known to
be the most efficient open-source linear algebra library cur-
rently available. In the Dequantize part, we generate the out-
put step size tensor by conducting the inner product of the
weight step-size vector and the activation step size vector.
We employ CUBLAS GEMM for this operation because it
is more efficient than CUTLASS for FP16 GEMM and is
also used in PyTorch’s default tensor multiplication, making
implementation straightforward. The output step size ten-
sor undergoes element-wise multiplication with the output
tensor to produce the final result tensor. Similar to the acti-
vation smoothing process, this operation is performed with
uploading to the shared memory of each tensor core block,
thereby maximizing acceleration performance.

B.2. Experimental Settings

The latency measurement for the kernel-implemented
model were conducted on a single RTX 3090 GPU with
a batch size of 32. To ensure accurate measurements, we
employed a warming-up phase consisting of 100 iterations
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Figure 1S. The activation distribution of the out proj layer in Vim-
Ti. (a) the input image, (b) the 19th out proj, and (c) the 23rd
out proj. Here, the layer index uses 0-based numbering.

prior to the actual timing. Subsequently, we measured the
100 times of inference latency and reported the median
value. By this methodology, we can conduct more reliable
assessment of the performance by mitigating the effects of
initial overhead and potential outliers. The use of the me-
dian value provides a robust tendency that is less sensitive
to extreme values compared to the arithmetic mean.

C. Additional Visualization
In the main manuscript, we only reported the distribution

of the 22nd out proj layer of Vim-Ti. These observations
are also present at other layer indices, and additional visu-
alizations can be found in Figure 1S. Furthermore, we have
reported Observations 1 and 2 for VMamba, LocalVim†,
LocalVim, and LocalVMamba in Figure 2S, and Obser-
vation 3 in Figure 3S. We visualized the input activation
of the out proj layer of backbones in Figure 2S, except
for LocalVMamba-S case, which is visualization of dt proj
layer.
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Figure 2S. Activation distributions for different input images. The x-axis is the channel dimension, the y-axis is the token dimension, and
the z-axis represents the absolute value. (a) VMamba-T, (b) LocalVim-T†, (c) LocalVim-T, and (d) LocalVMamba-S.
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Figure 3S. Activation distributions across token direction. We visualized the above distribution using 32 randomly sampled images. (a)
VMamba-T, (b) LocalVim-T†, (c) LocalVim-T and (d) LocalVMamba-S.
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