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A. Additional Material: Code & Project Page

The code has been submitted as a zip file along with the Supplement. Our results are presented in an easily accessi-
ble format on our project page. The link to the project page is as follows: https://micv-yonsei.github.io/
dragtext2025/

B. More Details on Prompt Engineering

In this section, we provide a detailed explanation of the analysis from Section 3.2., examining the effectiveness of prompt
engineering in point-based image editing. First, we explain how the analysis was conducted. Next, we present more examples
of the intention text we used and the corresponding results.

B.1. Implementation Details

Drag Editing with Intention Text. We estimated the editing intentions for each image using the handle points, the target
points, and the image masks provided by the DragBench dataset [8]. Additionally, we referenced the edited results from
four methods [3,4, 8, 12]. The intention text prompts were crafted by injecting these editing intentions into the original text
prompts. To ensure that secondary changes in the text prompts did not affect the editing results, we minimized alterations to
the vocabulary and sentence structures of the original text prompts.

For example, consider an image with the original prompt "a photo of a jug and a glass" where the jug’s
neck needs to be shortened. We can craft an intention text prompt via [5] such as:

"Create an image of a jug with a shorter neck. Shorten the neck by the distance
between a red dot and a blue dot. The jug should have a smooth, glossy finish.
Place the jug against a simple, neutral background."

However, this significantly altered the content of the original text prompt. This alteration makes it challenging to dis-
cern whether the changes in the edited result were due to these secondary modifications or the incorporation of the editing
intention in the text. Consequently, we incorporated concise terms representing the editing intention while preserving the
original vocabulary and sentence structure as much as possible, for example: "a photo of a short-neck jug and
a glass."

Linear Interpolation. To reflect gradual changes in the image embeddings to the text embeddings, we linearly interpolate
between the original text embeddings and the intention text embeddings during the dragging process. The weights of the
original text embeddings and the intention text embeddings are determined based on the distance between the handle point
hk and the target point g;:
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B.2. More Qualitative Results for Prompt Engineering

In Fig. 1, we present additional results for prompt engineering. Corresponding results for DRAGTEXT are also presented
to validate the effectiveness of our approach in comparison to prompt engineering. Prompt engineering was found to have
little impact on alleviating drag halting. In contrast, DRAGTEXT dragged handle points closer to target points, compared to
the original text prompt, the intention text prompt, and their interpolation.

User Drag Original Text Intention Text Interpolate Intention w/ DragText (Ours)

(d) "A photo of a man holding a crocodile with its mouth closed”

Figure 1. More qualitative results for prompt engineering (i.e. the intention text, and interpolated intention text). Red points and
blue points represent handle points and their target points respectively. Overall, DRAGTEXT moved the content at the handle point of
the User Drag image closer to the target point. Additionally, in (b), it was observed that interpolating the intention text with the original
text makes it challenging to maintain the object’s style. In (d), DRAGTEXT preserved semantics better than other methods while dragging
appropriately.



C. More Details on DRAGTEXT

In this section, we provide a comprehensive overview of our method to ensure clarity and ease of understanding. We
describe the pipeline of DRAGTEXT using pseudo-code to aid in understanding our approach. Additionally, we detail the
modifications necessary to apply DRAGTEXT to other point-based image editing methods.

C.1. Pseudo Code of DRAGTEXT

Algorithm 1 Pipeline of DRAGTEXT

Input: Input image X, text prompt ¢, image mask Minage, handle points {h;}7_;, target points {g;};;, denoising U-Net
Uy, diffusion time step ¢, maximum number of iterations steps K

Output: Output image X

1: z; < apply DDIM inversion to x( conditioned on c
2 29,¢% h « z,¢,hy

3: forkin0: K —1do

4 F(2F,eF) « Up(zF;er)

5:  Update z¥ using motion supervision

6 Update ¢* using text optimization

7 — 2k e
8 Update {h¥1}7_, using points tracking

2f+1, ék+1 k

9: 2y, ¢+ 2 K

10: fortint :1do

11: Zi_1 < apply denoising to z; conditioned on ¢
12: Xg < Zg

In DragText, another important element is the mask M, € R'*?. This mask is used to regularize text embedding
optimization but is not an input. Instead, it is automatically calculated by the CLIP tokenizer [7]. After the text prompt
passes through the tokenizer, the tokens excluding [EOS] and [PAD] tokens contain significant semantic information. The
length of these important tokens is [.

C.2. Modifications for Integrate with Other Methods

In the main paper, we explained DRAGTEXT based on DragDiffusion [8]. We chose this method because representative
diffusion model-based dragging methods [3, 4, 12] all utilize approaches from DragGAN [6] and DragDiffusion. Therefore,
they are constructed upon the foundation of DragDiffusion. However, they also developed techniques to overcome the
limitations of DragDiffusion. Taking these improvements into account, we made minor modifications to DRAGTEXT to
adapt our approach for each method.

C.2.1 FreeDrag

Point-based image editing has faced challenges, such as the disappearance of handle points during the dragging process.
Additionally, point tracking often fails to reach the target point because it moves to the location with the smallest difference
in the feature map. To address these issues, FreeDrag introduces Template Feature and restricts the path of point tracking to
a straight line.

FreeDrag generates the corresponding template features 7;* for each of the n handle points. During the optimization step,
the feature map is optimized to match the template features:
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This involves up to five iterations of motion supervision until the predefined conditions are met. Depending on the outcome,
feature adaptation is categorized into (a) well-learned features, (b) features in the process of learning, and (c) poorly learned
features. Point tracking is then performed based on these categories. This process is repeated until the handle points reach
the target points, after which the image is denoised to produce the edited image.

In FreeDrag, if the template feature is poorly learned (category (c)), the point not only reverts to its previous position but
also reuses the template feature map without updating its values. Inspired by this approach, our DragText computes the text
loss only during the (a) and (b) processes to align with the image. In cases categorized as (c), the text embedding is excluded
from the optimization process. Therefore, we define «; as 1 for cases (1) and (2), and O for case (3). The text loss is then

defined as follows:
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In DragText, during image optimization, ¢¥ does not undergo gradient descent, and during text optimization, the latent vector
zFdoes not undergo gradient descent.

C.2.2 DragNoise

The bottleneck features s; effectively capture richer noise semantics and efficiently capture most semantics at an early
timestep ¢t. Thus, DragNoise optimizes the bottleneck feature s; of the U-Net instead of the latent vector z; thereby shortening
the back-propagation chain. Accordingly, DRAGTEXT optimizes s; instead of z; during the image optimization processes.
For each iteration k, 8 undergoes a gradient descent step to minimize Lys:
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In DRAGTEXT, neither the latent vector zf nor the bottleneck feature s¥ undergoes gradient descent during the text
optimization. So the text optimization procedure is not modified in DragNoise.

C.2.3 GoodDrag

GoodDrag alternates between dragging and denoising, introducing periodic corrections to mitigate accumulated errors. This
approach is different from traditional diffusion-based dragging methods. They generally execute all drag operations at once
before denoising the optimized noisy latent vector z;. During the denoising process, which involves sampling images X
from a noisy latent vector z;, perturbations from dragging are corrected. However, if the denoising process is performed only
after all drag operations are completed, the errors accumulate too significantly to be corrected with high fidelity. To address
this, GoodDrag applies one denoising operation after B image optimization and point tracking steps.

For example, the latent vector z* has been denoised L%j times, the drag optimization is performed at the timestep ¢ =
T — %. To ensure this process is consistent, the total number of drag steps K should be divisible by B. Since DRAGTEXT
performs one text optimization step after one image optimization step, we sequentially repeat the image optimization, text
optimization, and point tracking steps B times, and then apply one denoising operation.

Moreover, when drag editing moves the handle points {h;}?_;, the features around handle points tend to deviate from
their original appearance. This deviation can lead to artifacts in the edited images and difficulties in accurately moving the
handle points. To prevent this, GoodDrag keeps the handle point h¥* consistent with the original point kY, throughout the
entire editing process:
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where ¢; = Q(hf, 71), and ¢? describes the square region centered at the original handle point hY. And, drag operations per
denoising step B = 10. Similarly, DRAGTEXT ensures the handle point ¥ remains consistent with the original point h9



during text optimization:
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Additionally, GoodDrag faced increased optimization difficulty from this design, due to the larger feature distance com-
pared to the original motion supervision loss. To mitigate this, a smaller step size and more motion supervision steps are used
for optimization. This strategy is also applied in DRAGTEXT.

D. Implementation Details

Table 1. Hyperparameters for point-based image editing methods and DRAGTEXT.

Methods | DragDiffusion FreeDrag DragNoise GoodDrag
Diffusion Model Stable Diffusion 1.5
Time Step (1) 35 35 35 38
LoRA Training Step 80 200 200 70
Maximum Optimization Step (K) 80 300 80 70
Square radius 7 1 3 1 4
Motion Supervision Loss
Learning Rate (1)) 0.01 0.01 0.02 0.02
Optimizer Adam
Aimage 0.1 10 0.2 0.2
+ Text Optimization Loss (DRAGTEXT)
Learning Rate 7y 0.004
Optimizer Adam
Atext 0.1
Point Tracking
Square radius 7o 3 - 3 12
Drag Optimization per Point Tracking 1 - 1 3
In Table 1, we listed the hyperparameters used for each point-based image editing method [3, 4, 8, 12]. These values

were consistently used in both the Baseline and w/ DRAGTEXT experiments. For a fair comparison, we applied the same
hyperparameter values from the respective paper to our experiments. Additionally, we maintained the same text optimization
loss across all methods to demonstrate the robustness of our approach.

In FreeDrag, values related to point tracking are omitted since it replaces point tracking with line search.

E. More Qualitative Results

In Fig. 2, we additionally present the results of applying DRAGTEXT to each method [3,4, 8, 12]. In our experiments,
we applied DRAGTEXT to various point-based image editing methods and evaluated their performance. The results show
that DRAGTEXT can effectively drag the handle points to their corresponding target points while maintaining the semantic
integrity of the original image. Moreover, the consistent success of DRAGTEXT across multiple methods underscores its
robustness and adaptability.
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Figure 2. DRAGTEXT effectively moved the handle point to the target point while preserving semantics. Moreover, the consistent
performance across different methods demonstrates the generalizability of DRAGTEXT.



F. Evaluation Metrics

F.1. LPIPS

LPIPS [! 1] uses ImageNet classification models such as VGG [9], SqueezeNet [ 1], and AlexNet [2]. We measured LPIPS
using AlexNet. LPIPS measures the similarity between two images by calculating the Euclidean distance of the activation
maps obtained from several layers of a pre-trained network, scaling them by weights w, and then averaging the values
channel-wise to compute the final LPIPS score.

User Drag Baseline Model w/ DragText (Ours)

User Drag Baseline Model ~ w/ DragText (Ours)
4 Oy

& 'ﬁ‘ s .
LPIPS: 0.063 LPIPS: 0.099 LPIPS: 0.168 LPIPS: 0.193
“A photo of a baby goat” “A photo of a sofa chair”

Figure 3. Comparing the LPIPS scores of the baseline model and DRAGTEXT. Despite DRAGTEXT achieving better edits and
preserving semantics well, its LPIPS scores are worse. In the left image, the baby goat’s face direction in the input image is the same in
the result with DRAGTEXT. In contrast, the baseline model has the baby goat looking slightly more forward. In the right image, unlike the
baseline model, DRAGTEXT maintains the complete form of the sofa chair.

LPIPS is an appropriate metric for measuring the similarity between two images, emphasizing that image editing should
maintain similarity to the original image. However, due to the nature of the drag editing task, the image will inevitably
change. Consequently, even when dragging is performed successfully, the LPIPS score might worsen. For instance, if an
image does not change at all, it would yield an LPIPS score of 0, the best possible score. As shown in Fig. 3, even though
we achieved a more desirable image editing outcome, the LPIPS score was lower. Therefore, we propose that LPIPS should
not be overly emphasized if the score falls below a certain threshold. To address this issue, we suggest using the product of
LPIPS and MD, which are complementary metrics, as a more robust evaluation metric.

F.2. Mean Distance

User Drag Baseline Model w/ DragText (Ours)

User Drag Baseline Model w/ DragText (Ours)

MD: 46.59 MD: 71.26 MD: 58.70 MD: 270.05
“A photo of a man holding a crocodile” “A photo of a burger”

Figure 4. Comparing the MD scores of the baseline model and DRAGTEXT. Despite DRAGTEXT moving the handle point closer to the
target point, the MD score was lower. In the left image, the baseline model showed a better MD score, despite the crocodile’s snout shape
being distorted compared to DRAGTEXT. In the right image, DRAGTEXT completed dragging, but its MD score is worse.



Mean distance (MD) is computed via DIFT [10]. First, DIFT identifies corresponding points in the edited image that
correspond to the handle points in the original image. These identified points are regarded as the final handle points after
editing is complete. Then, the mean Euclidean distance between the corresponding point and the target point is calculated.
MD is the average value of all handle-target point pairs.

We propose that evaluating drag editing using Mean Distance (MD) on certain images in the DragBench dataset is chal-
lenging. Some images in DragBench require specific objects to disappear through drag editing as the points move. However,
if a specific object disappears, there would be no corresponding objects in the edited image, resulting in a significantly high
MD value. For instance, in Fig. 4, the handle point and target point indicate that the toothpick should be perfectly inserted
into the hamburger. Despite successfully achieving this, DIFT fails to recognize the toothpick, resulting in a higher MD value
being calculated. Conversely, there are cases where the MD value is low because the points remain in the same semantic
position, but the actual image editing was unsuccessful due to distorted shapes and loss of semantics. While MD is an excel-
lent metric for tasks involving moving feature points of objects, it has certain limitations and challenges when applied to all
images in point-based editing tasks.

G. Visual Ablation on the Hyperparameters of Regularization

In Fig. 5, we provide extra visual ablation results to demonstrate how the hyperparameter A impacts the regularization
process in text optimization. We modified images by adjusting A,y Within a range from 0 to 10, which allowed us to control
the level of regularization applied during the text optimization phase. When Ay, is close to 0, it results in some of the
important semantic information being lost. On the other hand, applying an excessively high Ay, prevents the optimization
of the text embedding from effectively altering the image.

User Drag (a) Atext =10.0 (b) Atext =1.0 (C) Atext =0.1 (d) Atext =0.0

R s i~

"Countryside, hillside, house, road, grass”

“The oil painting of a dog”
Figure 5. Effect of text regularization with visual ablations on the hyperparameter \x:. The red circles indicate the loss of semantics.

In the first column, the small house on the right has disappeared. In the second column, the cliff’s shape has collapsed. In the third column,
the position of the dog’s facial features has changed.



H. Ablation on the U-Net Feature Maps

We utilize various U-Net decoder blocks for DRAGTEXT with the image embedding fixed from the 3rd block. In Fig. 6
and Table 2, The 3rd block maintains semantics and achieves effective dragging. Lower blocks (e.g., Block 1) have difficulty
with semantics, and higher blocks (e.g., Block 4) exhibit poor dragging.

Table 2. Quantitative evaluation results by U-Net block number applied in DRAGTEXT

U-Net Block # | LPIPS| MD|

Block #1 0.135 36.02
Block #2 0.154 37.08
Block #3 0.124  31.96
Block #4 0.119 33.60

I. More Qualitative Results for Manipulating Embeddings

In Fig. 7 and Fig. 8, we apply linear interpolation and extrapolation to the image and text embeddings to generate not only
the intermediate stages of the image editing process but also the parts beyond the editing process. This is possible because
DRAGTEXT optimizes both the text and image embeddings simultaneously.
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Figure 6. More image generation results per U-Net decoder block. Optimizing the text embedding using the 3rd block of the U-Net
decoder yields the best performance in terms of dragging and image semantics.
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Figure 7. More qualitative results for manipulating embeddings with DRAGTEXT. DragText can generate images outside the originally
intended editing range in the direction of the drag while preserving the semantic content at the same time.



Figure 8. More qualitative results for manipulating embeddings with DRAGTEXT. DragText can generate images outside the originally
intended editing range in the direction of the drag while preserving the semantic content at the same time.
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