Supplementary Material - SADDLe: Sharpness-Aware Decentralized Deep
Learning with Heterogeneous Data

1. Theoretical Analysis

The update rule for Q-SADDLe with SAM-based gradi-
ent G is as follows:

Xt — W (X<t> —n (5M<t) + f;(t)))

X @) _ x(t+1)
U
M® + (1 — )y WGW®

M(t+1) — ,LLM(t) + (1 o ,LL)

= (p+ (1 —p)BW)
+ 1*7“(1 ~W)X®

ey

For a doubly stochastic mixing matrix W, we can sim-
plify the updates as follows:
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Here, g! is the SAM-based gradient update, which we
reiterate for ease of understanding :
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For the rest of the analysis, we use £(x!) = ¢! for simplicity
of notation. We introduce the following lemma to define
an upper bound on the stochastic variance of SAM-based
updates.

Lemma 1 Given assumptions 1-3, the stochastic variance
of local gradients with perturbation can be bounded as
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(a) follows from the property ||x1 + 22 + ...z, ||? <
nlllz1]]? + |lz2/|®...]|zn]|?] for random variables
T1,%2,...Zy. (b) follows from Assumption 2 in the
main paper. (c) follows from Assumption 1 and the
perturbation &; being bounded by the perturbation radius p.

Lemma 2 Given assumptions 1-3 and g; =
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As a first step, we simplify our convergence analysis by



defining another sequence of parameters z(*) with the fol-
lowing update rule:
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Inspired by QGM [8], this sequence has a simpler SAM
update rule, while our parameters x(*) follow SAM-based
gradient updates along with a momentum buffer mf. We
use g® = L3 glandij = 115 for rest of the analysis.
We begin by proving that the error e®) = z() —x(*) remains
bounded.

Lemma 3 Given Assumptions 1-3, the sequence of iterates
generated by Q-SADDLe satisfy
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Proof: For e(®) = 0, specifying e(*+1) in terms of up-
date sequences z(**1) and x(*+1):
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Using equation (2), we have [8]:
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Taking expectation of |e(**1)||2:
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(a) is the result of Lemma 1.

We now proceed to bound the consensus error.

Lemma 4 Given Assumptions 1-3, the sequence of iterates
generated by Q-SADDLe satisfy,
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Proof: We start by describing X! and X**! in terms
of the update rule in equation 1:
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(a) comes from Assumption 3 on the Mixing matrix. (b) re-
sults from G = E,[G®]+G® —E,[G")] and Lemma 1.



We first analyze *:
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(a) follows from Assumption 1, and (b) is the result of
perturbation being bounded by the perturbation radius p.
Substituting the result of equation 14 in 13:
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The assumption that learning rate 7 < 1TL ensures that

24n?L% < A\?/4. Modifying the above equation through
this and rearranging the terms we have:
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In the above bound on the consensus error, we have a
momentum error term E || M®) — M(®) H2 We present the
following lemma to provide an upper bound on this error:
Lemma 5 Given Assumptions 1-3, the sequence of iterates
generated by Q-SADDLe for 1= 5 < 3
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Proof: Starting from the update (1), we have:
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(a) follows from Lemma 1, and (b) follows from the in-
equality 2 + ;]2 < (1+a)all? + (1 + 1) ? for
any a > 0. Since W < I, we have (uI + (1 — p)SW) <
(b+(1—w)p)I=(1-(1-p)(1— p))I Further, we have
I — W < 21 [8]. With these observations:
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Substituting equation 14 in the above equation: 1.1. Proof for Theorem 1

We start with the following property for a L-smooth
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coefficients, we describe the progress made in each gossip

averaging consensus round: Now, we find an upper bound for /1:
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Rearranging the above terms we get:
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Putting this back into equation 28:
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Using our assumption 1 < ﬁ and Assumption 1, we have:
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(a) follows from the perturbation &; being bounded by

the perturbation radius p. Now we see that the terms ||z(*) —
x®)|2 2, which we bound in Lemma 3 and

4 respectively, appear in the above equation. We start by
Lemma 3, and scale both sides by 5
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Next, we take the total consensus change from equation
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Through equation 32 and 33, we define another sequence
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Adding the right hand sides of equation 31, 32 and 33,
and bounding ¢**! in terms of ¢':
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Simplifying the above equation by rearranging terms and
approximating some coefficients:
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1.2. Proof for Corollary 2

To find the convergence rate with a learning rate n =

(] (ﬁ) and perturbation radius p = O (ﬁ), we find

the order of all the terms in equation 37:

Adding all the terms and ignoring n in higher order
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This implies that when 7' is sufficiently large, Q-
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SADDLe converges at the rate of O (\/ﬁ

1.3. Condition on Learning Rate » and Momentum

Coefficient 3

In Lemma 4, we assume n < ﬁ and in Lemma 5, we
1

assume 1 < . Combining both bounds results in n <
min(=, 177) < min(s-, #) < 2-.In Theorem 1 proof,
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we assume 1 < ( to simplify equatlon 30. Further to



simplify equation 35, we have the following upper bound
onn:
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Combining all the above mentioned bounds, we can de-
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Similarly, for momentum coefficient 5, we assume
- £ 5 < /\ in Lemma 5. Note that we don’t abide by these
constramts and still achieve competitive performance for
our results in Section 6 (main paper) and Section 3 (Sup-

plementary).

scribe 7 < min (

2. Algorithmic Details
2.1. Background

To highlight that SADDLe can improve the generaliza-
tion and communication efficiency of existing decentralized
algorithms, we choose two state-of-the-art techniques for
our evaluation: Quasi-Global Momentum (QGM) [8] and
Neighborhood Gradient Mean (NGM) [1]. QGM improves
the performance of D-PSGD [7] without introducing any
extra communication. However, as shown in our results
in Section 6, it performs poorly with extreme data hetero-
geneity. To achieve competitive performance with higher
degrees of non-IIDness, NGM proposes to boost the perfor-
mance through cross-gradients, which require 2x communi-
cation (i.e., an extra round of communication) as compared
to D-PSGD [7].

Quasi-Global Momentum (QGM): The authors in
QGM [8] show that local momentum acceleration is hin-
dered by data heterogeneity. Inspired by this, QGM updates
the momentum buffer by computing the difference between
two consecutive models x; 1 and x! to approximate the
global optimization dlrectlon locally. The following equa-
tion illustrates the update rule for QGM:

QGM: xi*' = " wi[x! — (g} + pm} )]
N
P ¢ (t+1) (40)
where, m! = =1 1-— s s S
, m; = pmy -+ ( 1) 7

Neighborhood Gradient Mean (NGM): NGM [I]
modifies the local gradient update with the aid of self and
cross-gradients. The self-gradients are computed at each
agent through its model parameters and the local dataset.
The data variant cross-gradients are derivatives of the lo-
cal model with respect to the dataset of neighbors. These

gradients are obtained through an additional round of com-
munication. The update rule for NGM is shown in equation
41, where each gradient update g§- is a weighted average of
the self and received cross-gradients.

NGM: x{t = " wi;x} —ngl;
JEN()

gl = Z wi; VF; (x4 db).
JEN (i)
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Algorithm 1 NGM vs N-SADDLe

Input: Each agent ¢ € [1,n] initializes model weights x;,
step size 1, momentum coefficient 3, averaging rate -,
mixing matrix W' = [w;;]; jeq1,n)> and I;; are elements
of n x n identity matrix, N'(¢) represents neighbors of i
including itself.

procedure TrRAIN( ) V¢
fort=1,2,...,Tdo
di ~ D'
g, = VFi(x}; d})

’L’ ?

1
2
3
4. g;‘ = V‘Fi(xi + f(XD;
5
6
7

df), where £(x}) = P||g§:||
SENDRECEIVE(x!)
for each neighbor j € {N (i) — i} do

g, = V(i d)

Xj5 @

8. g;i = VFi(Xj + §(x§»);d§), where §(x§) =p gf
9. SENDRECEIVE (g%;) (&)
10. end
11. 8 = D jen) WisB
12. m! = 5m§t_1) +g!
13. g = Eje/\f(i) wijg;&j
14. m! = Bm!"V 4+ g
15 X£t+1/2) = XZZ‘ — nmi
t4+1 t4+1/2
16. X = x (T2 1y 57 (Wi — T
17. end
return x;

2.2. N-SADDLe and Comp N-SADDLe

Algorithm 1 highlights the difference between NGM
and N-SADDLe. Specifically, N-SADDLe computes SAM-
based gradient updates for self and cross gradients (lines 4
and 8). Similarly, please refer to Algorithm 2 to understand
the difference between the compressed versions of NGM
and N-SADDLe (i.e., Comp NGM and Comp N-SADDLe).
The error between the original gradients and their com-
pressed version is added as feedback to the gradients before




Algorithm 2 Comp NGM vs |Comp N-SADDLe

Input: Each agent ¢ initializes model weights x;, step size
7, averaging rate -y, mixing matrix W = [w;]; jeq,n)> Q(.)
is the compression operator, A (7) represents neighbors of i.

procedure TRAIN( ) V¢
1. fort=1,2,..., T do

2. di~D;
3. gl = VF;(xt;d})
4. gh= V(x4 €(xh); df), where £(xt) = pBiiy
5. pi; =gl +ej
6. P, =8} +e;
7. 5f7i = Q(Pfi)
8. efjl =pj; — 0},
9. SENDRECEIVE(x!)
10. for each neighbor j € {N(i) — i} do

t_ )
11. gl = VFl-(x;, dt)

t

12. gl = VE(x} + £(x); df), where £(x!) = p”—iﬁ
13, P = &j; +ej;
14. pj; =g + el

t t
. el
16. e, =pj—0j
17. SENDRECEIVE(S)
18. end
19. end
20. gﬁ = Zje]\/(i) wij(ﬁj
21. m! = fm!""V 4 gt
22. X(-t+1/2) = Xt. — nmf

1 1/2
23. XE-tJr ) = X5t+ /2) + ryzjej\/'(i) (wij — Iij)X§v
24.  end
return x/

i

compressing them in the next iteration (lines 5, 6, 13, and
14 in Algorithm 2).

3. Additional Results
3.1. SADDLe with DPSGD

A natural question that arises is, does SADDLe improve
the performance of DPSGD [7] in the presence of data
heterogeneity? Note that DPSGD assumes the data dis-
tribution to be IID and has been shown to incur signifi-
cant performance drop with non-IID data [8]. Algorithm
3 shows the difference between DPSGD and D-SADDLe, a
version incorporating SAM-based updates within DPSGD.
D-SADDLe leads to an average improvement of 10% and

Algorithm 3 DPSGD vs D-SADDLe

Input: Each agent ¢ € [1, n] initializes model weights XEO),

learning rate 7, perturbation radius p, and mixing matrix
W = [wi;]; jeq1,n)» N (i) represents neighbors of 4.
procedure TrRAIN( ) V¢

1. fort=0,1,...,7 —1do
2. d¥ ~ D;
3. g = VE(d;x)
4. B = VE(x!+E(xt);dl), where £(xt) = prE
A

t+1 ~
6 xV=xi—ng

1

7. SENDRECEIVE(XEH_ 2 ))

t+1 t+1
8. (Y = Y e, wix
return

5.4% over DPSGD for CIFAR-10 and CIFAR-100 datasets,
respectively, as shown in Table 1.

3.2. Results with Top-k Sparsification

We present results for QGM and Q-SADDLe with Top-
30% Sparsification-based compressor in Table 2. Note that
Top-30% implies that only the top 30% of model updates
for each layer are communicated to the peers. As shown in
Table 2, QGM performs poorly in the presence of compres-
sion, with a significant drop of ~ 5 — 57%, and the training
even diverges for some cases. In contrast, Q-SADDLe is
much more stable, with an accuracy drop of ~ 0.6 — 18.5%
with compression.

3.3. Compression Error and Gradient Norms for
N-SADDLe

Recall that the expectation of compression error for a
compression operator ()(.) has the following upper bound:

EqllQ(8) — 0|I> < (1 —¢)||6]]*, where ¢ >0 (42)

For NGM and N-SADDLe, 6 corresponds to the gra-
dients g; and g; respectively. In Figure 1, we compare
the compression error (||Q(6) — 6||) and gradient norms
for NGM and N-SADDLe with a 1-bit Sign SGD-based
compression scheme. Clearly, N-SADDLe leads to a lower
compression error, as well as lower gradient norms through-
out the training. Here, we plot the sum of layer-wise com-
pression errors and the sum of gradient norms for each layer
in the ResNet-20 model. Like Q-SADDLe, the bound in
Equation 42 is tighter for N-SADDLe than NGM.



Table 1. Test accuracy of DPSGD and D-SADDLe evaluated on CIFAR-10 and CIFAR-100 over ResNet-20, distributed with different
degrees of heterogeneity over ring topologies.

CIFAR-10 CIFAR-100
Agents  Method o« =0.01 o = 0.001 @ =0.01 @ =0.001
DPSGD (IID) 91.05 £ 0.06 64.47 £ 0.43
5 DPSGD 82.15 4+ 3.25 80.54 + 4.36 4730 + 4.92 4554 + 0.71
D-SADDLe (ours) 85.38 - 0.84 84.94 + 0.31 54.35 + 0.48 54.30 + 0.50
DPSGD (IID) 90.46 + 0.33 62.73 £ 1.03
10 DPSGD 49.17 + 17.38 40.74 + 2.62 31.66 + 0.84 29.79 + 1.30
D-SADDLe (ours) 64.18 + 5.63 61.30 + 0.79 37.49 + 0.59 3531 + 0.77
DPSGD (IID) 89.46 + 0.02 5961 £ 1.15
20  DPSGD 40.49 + 3.06 36.13 + 5.67 24.45 4+ 0.51 21.58 + 1.00
D-SADDLe (ours) 52.14 + 2.02 47.06 + 2.35 26.39 + 0.17 24.92 + 0.62

Table 2. Test accuracy (Acc) and accuracy drop (Drop) of QGM and Q-SADDLe with Sparsification (top-30%) based compression

evaluated on CIFAR-10 distributed over ring topologies. x indicates 1 out of 3 runs diverged.

CIFAR-10
Agents Comp Method =001 o= 0.001
Acc (%) Drop(%) Acc (%) Drop(%)
5 v QGM 83.58 +£2.96 4.86 67.04 £9.76 21.68
v Q-SADDLe (ours) 90.01 £+ 0.38 0.65 89.49 + 0.38 1.18
10 v QGM 52.23 % 25.18 23.00 £ 1.96 56.48
v Q-SADDLe (ours) 80.34 + 5.56 7.38 71.01 £ 3.75 15.32
2 v QGM 62.90 £+ 5.89 9.3 32.92 £9.25 29.56
v Q-SADDLe (ours) 71.96 + 2.51 6.45 64.31 = 2.14 18.50

Table 3. Test accuracy (Acc) and accuracy drop (Drop) of NGM and N-SADDLe with 2-bit quantization compression scheme [2] evaluated

on CIFAR-10, with a = 0.01, 0.001.

CIFAR-10 (ResNet-20)

Agents Comp Method a=0.01 a = 0.001
Acc (%) Drop(%) Acc (%) Drop(%)
5 v NGM 87.38 £2.01 3.49 87.27 £ 0.56 3.46
v N-SADDLe (ours) 91.35 + 0.17 0.61 91.18 + 0.25 0.51
10 v NGM 79.89 £+ 8.74 5.19 79.20 £ 3.05 4.23
v N-SADDLe (ours) 87.25 + 1.65 1.18 85.70 + 1.15 1.59
20 v NGM 81.87 £ 1.17 2.97 76.68 £+ 0.95 6.90
v N-SADDLe (ours) 84.25 + 0.17 2.01 85.09 + 0.31 1.52

3.4. Stochastic Quantization for NGM and N-
SADDLe

The main paper uses Sign SGD [4] compression scheme
with NGM and N-SADDLe since it has been shown to per-
form better than stochastic quantization for extreme com-
pression [4,5]. However, to demonstrate the generalizabil-
ity of our approach, we present results on 2-bit stochastic
quantization in Table 3. NGM incurs an average drop of
4.4%, while N-SADDLe incurs only a 1.2% average accu-
racy drop in the presence of this compression scheme.

3.5. Loss Landscape Visualization

To visualize the loss landscape, we randomly sample
two directions through orthogonal Gaussian perturbations

[6] and plot the loss for ResNet-20 trained with CIFAR-10
distributed across 10 nodes with @« = 0.001. As shown
in Figure 3, we observe that Q-SADDLe and Comp Q-
SADDLe have much smoother loss landscapes than QGM
and Comp QGM. The compressed counterparts of QGM
and Q-SADDLe are relatively sharper than their respective
full communication versions. This is intuitively expected
since communication compression leads agents to receive
less information from their neighbors, resulting in more re-
liance on local updates. This can exacerbate over-fitting
in the presence of data heterogeneity. We observe similar
trends for NGM, N-SADDLe, and their compressed ver-
sions as shown in Figure 4.
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CIFAR-10 dataset.

3.6. Communication Cost

This section presents the exact amount of data transmit-
ted (in Gigabytes) during training (Tables 4, 5, 6, 7 and 8).

Table 4. Communication costs per agent (in GBs) for experiments
in Table 1 (main paper) for QGM and Q-SADDLe with a stochastic
quantization-based compression scheme with 8 bits, leading to a
4x reduction in communication cost.

Agents Comp CIFAR-10 CIFAR-100

5 136.45 111.32

v 34.11 27.83

10 68.44 55.66
v 17.11 13.91

20 34.43 27.83
v 8.60 6.95

17.43 14.02
40 v 4.35 3.50

4. Decentralized Learning Setup

All our experiments were conducted on a system with
4 NVIDIA A40 GPUs, each with 48GB GDDR6. We re-
port the test accuracy of the consensus model averaged over
three randomly chosen seeds.

Table 5. Communication costs per agent (in GBs) for experiments
in Table 2 for QGM and Q-SADDLe with a top-30% compression
scheme, leading to a 2.2 x reduction in communication cost.

Agents Comp CIFAR-10
5 v 61.38
10 v 30.78
20 v 15.49

Table 6. Communication costs per agent (in GBs) for experiments
in Table 2 (main paper) for QGM and Q-SADDLe with a stochastic
quantization-based compression scheme with 10 bits , leading to a
3.2x reduction in communication cost.

Agents Comp Imagenette
5 110.23
v 34.44
55.10
10 v 17.21

4.1. Visualization of Non-IID Data

Figure 2 illustrates the number of samples from each
class allocated to each agent for the 2 different Dirichlet
distribution « values used in our work. a = 0.001 corre-
sponds to the most extreme form of data heterogeneity, i.e.
samples from only 1 class per agent. Note that this level
of non-IIDness has been used in CGA [3] and NGM [1]



Table 7. Communication costs per agent (in GBs) for experiments
in Table 3 (main paper) for NGM and N-SADDLe with 1-bit Sign
SGD, leading to a 32 X reduction in the cost for the second round
and a total of 1.94x reduction in the entire communication cost.

Agents Comp CIFAR-10 CIFAR-100
5 27291 222.65
v 140.67 114.76
10 136.89 111.32
v 70.56 57.38
20 68.88 55.66
v 35.50 28.69

Table 8. Communication costs per agent (in GBs) for experiments
in Table 4 (main paper) for NGM and N-SADDLe with 1-bit Sign
SGD, leading to a 32 reduction in the cost for the second round
and a total of 1.94x reduction in the entire communication cost.

Agents Comp Imagenette ImageNet
10 110.25 22466.30
v 56.82 11580.56

to evaluate the performance. o = 0.01 has been used in
QGM [&] and is relatively mild, with most agents accessing
samples from 2 different classes (some even from 4 classes).

4.2. Hyper-parameters

This section presents the hyper-parameters for results
presented in Section 6 (main paper) and Section 3. All our
experiments were run for three randomly chosen seeds. We
decay the learning rate by 10x after 50% and 75% of the
training for all experiments except for ImageNet results in
Table 4 and Figure 2. For ImageNet, we decay the learning
rate by 10x after 33%, 67%, and 90% of the training. For
Figure 2, we use the StepLR scheduler, where the learning
rate decays by 0.981 after every epoch. We use a Nesterov
momentum of 0.9 for all our experiments, and keep p = /3,
similar to QGM [8]. We also use a weight decay of le-4
for all the presented experiments. Please refer to Table 9
for the learning rate, perturbation radius, number of epochs,
and batch size per agent for all the experiments in this pa-
per. For a fair comparison, we ensure that all the techniques
utilize the same set of hyper-parameters.

We tune the global averaging rate -y through a grid search
over v = {0.01,0.1,0.2, ..., 1.0} and present the fine-tuned
~ used for experiments in Tables 3, 4 from the main paper
and Table 3 in Table 10. For results in Tables 1, 2 (main
paper), and 1, we use v = 1.0 for all the experiments. For
Top-30% Sparsification results shown in Table 2, we use
~ = 0.4. For our experiments on torus topology in Table 5
(main paper), we use an averaging rate of 0.5.
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Figure 3. Visualization of the loss landscape for ResNet-20 trained
on the CIFAR-10 dataset distributed across a 10 agent ring topol-
ogy with o = 0.001.
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Figure 4. Visualization of the loss landscape for ResNet-20 trained on the CIFAR-10 dataset distributed across a 10 agent ring topology
with o = 0.001.

Table 9. Learning rate (n), the perturbation radius (p) (where applicable), batch size per agent, and the number of epochs for all the
experiments for QGM, Q-SADDLe, NGM, N-SADDLe, and their compressed versions across various datasets.

Dataset CIFAR-10 CIFAR-100 Imagenette ImageNet
Learning Rate (1) 0.1 0.1 0.01 0.01
Perturbation Radius (p) 0.1 0.05 0.01 0.05
Epochs 200 100 100 60
Batch-Size/Agent 32 20 32 64

Table 10. Global averaging rate (y) for our experiments in Table 3, 4 (main paper) and 3.

Method Non-IID Level (o) CIFAR-10 CIFAR-100 Imagenette ImageNet
NGM 0001 005 1o
Comp NOM 0001 0s 05 o5 o3
N-SADDL: 0001 005 1o
0.01 0.5 0.5 0.1 1.0

Comp N-SADDLe 0.001 05 05 05 1.0
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