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Transformers”

1. Experimental setting
We report the detailed experimental settings used while

pre-training and fine-tuning the models, in Tables 1, 3, and
4. In the setting of self-supervised learning, we have used
the same hyperparameters as discussed in the original paper
for both DINO [2] and EsViT [8].

Table 1. Summary of training method used to pre-train our proposed
approach on Imagenet-1k and fine-tune on three other datasets
namely Imagenet-200 [5], CIFAR-10 [7] and CIFAR-100 [7]

Procedure → UCB Downstream task
Pretrain. Finetune.

Batch size 256 256
Optimizer Adam SGD
LR 3.10−3 3.10−4

LR decay cosine cosine
Weight decay 0.02 0.02
Warmup epochs 5 5
Label smoothing ε 0.1 0.1
% Dropout 0.1 0.1
Stoch. Depth ✓ ✓
Repeated Aug ✓ ✓
Gradient Clip. 1.0 1.0
H. flip ✓ ✓
RRC ✓ ✓
Rand Augment ✓ ✓
LayerScale ✓ ✓
Mixup alpha ✓ ✓
Cutmix alpha 1.0 1.0
Erasing prob. ✓ ✓
ColorJitter 0.3 0.3
Test crop ratio 1.0 1.0
Loss CE CE

2. Additional Experiments
2.1. Image experiments

In the main submission, we have finetuned three datasets
Imagenet-200 [5], Cifar-10 [7], and CIFAR-100 [7]. In
this supplementary, we report the results of the additional
experiments conducted on several other datasets as shown in

Table 3. A detailed description of the dataset along with the
Train, Test split is given in Table 2

Table 2. Detailed list of the datasets along with Train-Test size used
for finetuning

Dataset Classes Train size Test size
Image Classification

Imagenet-200 [5] 200 1,00,000 10,000
CIFAR-10 [7] 10 50,000 10,000
CIFAR-100 [7] 100 50,000 10,000
Describable Textures [3] 47 3,760 1,880
Oxford-IIIT Pets [10] 37 3,680 3,669
Oxford Flowers 102 [9] 102 2,040 6,149
STL10 [4] 10 5,000 8,000

Audio Classification
DCASE19 [6] 10 9700 4157
ESC-50 [11] 50 1600 400
FSC22 [1] 27 1420 606

Table 3. Comparison between SOTA models pre-trained models on
Imagenet-1k. We finetune these models on various small datasets.
With our method, we were able to beat the baseline results. The
baseline results were trained using the training techniques in DeiT-
III.

Model name Image classificaion
Describable
Textures [3]

Oxford
IIIT Pets [10]

Oxford
Flowers 102 [9] STL10 [4]

ViT-B-16 99.5 99.1 98.6 97.8
ViT-B-32 98.1 98.0 96.4 96.7
ViT-L-16 99.1 99.0 98.9 97.9
ViT-L-32 97.9 98.3 97.3 97.1
ViT-H-14 97.7 97.6 96.7 95.6
ViT-B-16-UCB 99.8 100 100 100
ViT-B-32-UCB 97.1 97.6 97.8 98.1
ViT-L-16-UCB 99.2 98.8 99.0 99.1
ViT-L-32-UCB 97.5 97.2 98.6 98.9
ViT-H-14-UCB 98.8 99.1 99.3 99.4

2.2. Audio Experiments

We have also conducted an audio classification experi-
ment on three datasets. We have extracted the audio spec-
trograms from the audio before feeding them in our model.
The results are highlighted in Table 4.

3. GPU Memory cost of the proposed approach
We note that our proposed approach utilizes additional

GPU memory compared to standard ViTs. To demonstrate
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Table 4. Comparison between various approaches for Audio classi-
fication

Model name Audio classification
FSC22 [1] ESC50 [11] DCASE19 [6]

ViT-B-16 84.1 81.5 85.1
ViT-B-32 82.4 80.4 82.2
ViT-L-16 83.6 81.8 83.9
ViT-L-32 82.7 81.2 83.1
ViT-H-14 83.8 82.9 84.6
ViT-B-16-UCB 86.4 83.4 86.7
ViT-B-32-UCB 83.2 82.7 83.6
ViT-L-16-UCB 84.8 83.9 86
ViT-L-32-UCB 83.8 82.9 82.9
ViT-H-14-UCB 85.2 83.7 86.6

this, we report [Batch size / GPU Memory Usage (MB)].
From Table 5 we see that with increasing batch size we
are seeing an increase in GPU memory. The memory cost
increases with higher p values in the top − p parameter as
can be seen in Table 6.

Table 5. GPU memory requirement for different batch size while
keeping the top− p parameter fixed at 5. OOM denotes of out-of-
memory problem.

Batch size 32 64 128 256 512
GPU Memory Usage 10867 18209 32379 65301 OOM

Table 6. GPU memory requirement for different p values in the
top− p parameter. The batch size has been fixed at 32

Top-p 1 4 5 6 10
GPU Memory Usage 9583 10823 10967 12041 13431
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Figure 1. Visualization of Images after dropping redundant patches
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