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A. Derivation of Counting Precision and Recall

In this section, we provide a more detailed explanation
of the derivation of Eqs. 4 and 5 from the paper, specif-
ically the formulas for calculating counting precision and
counting recall based on the inferred quantities cpos and cneg

in the context of the mosaic test. To simplify the notation,
we omit the indices i, j from all the involved quantities, as
our focus is on a single mosaic.

As stated in the paper, we deal with counting rather
than detection. Therefore, we do not know the exact na-
ture of each inferred instance, i.e., we cannot assign a cor-
rect/incorrect label to each different detected object. How-
ever, we can still estimate the total number of true positives
(TPs), false positives (FPs), and false negatives (FNs) di-
rectly from the outputs of the counting model. We make the
following assumptions:

• For the positive image (the top part of the mosaic),

TPpos =

{
cpos, if cpos < c̃

c̃, otherwise
, (1)

where c̃ is the ground truth of the positive class. In-
deed, if the model predicts fewer objects than the
ground truth, all the predicted objects are considered
correct, and the remaining ones are FNs. Conversely,
if the model predicts more objects than the ground
truth, only c̃ objects are correct, and the remaining con-
tribute to the FPs. This situation for FNs and FPs can
be directly derived from Eq. (1). In fact, given that
cpos = FPpos + TPpos, it follows that

FPpos =

{
0, if cpos < c̃

cpos − c̃, otherwise
(2)
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and provided that c̃ = FNpos + TPpos, we also have

FNpos =

{
c̃− cpos, if cpos < c̃

0, otherwise
(3)

• For the negative image (the bottom part of the mosaic),
the situation is simpler, given that all the contributions
inferred by the model are FPs, as the TPs are identi-
cally zero, and thus also the FNs:

TPneg = 0 (4)
FPneg = cneg (5)
FNneg = 0 (6)

With these quantities defined, we can introduce the
counting precision and the counting recall, starting from
their definitions in terms of TPs, FPs, and FNs.

A.1. Counting Precision

We start with the definition of precision, which is the
following:

P =
TP

TP + FP
(7)

Considering that the TPs and FPs are the sums of the respec-
tive contributions from the positive and negative parts of the
mosaic – i.e., TP = TPpos + TPneg and FP = FPpos + FPneg

– we obtain the precision expressed in terms of the quanti-
ties computed in Eqs. (1) to (3) and (5). Substituting and
simplifying, we obtain:

P =


cpos

cpos + cneg , if cpos < c̃

c̃

cpos + cneg , otherwise
(8)

which we can rewrite in a simpler manner as:

P =
min(cpos, c̃)

cpos + cneg . (9)
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This quantity is averaged among all the possible mosaics,
which are N(N − 1) (for each image, there are N − 1 pos-
sible mosaics), to obtain the final formula for the counting
precision reported in the paper.

A.2. Counting Recall

The same idea used for deriving the counting precision
can also be employed to compute the counting recall. The
recall is defined as:

R =
TP

TP + FN
(10)

Even in this case, TPs and FNs are the sums of the respec-
tive contributions from the positive and negative parts of the
mosaic – i.e., TP = TPpos+TPneg and FN = FNpos+FNneg.
We obtain the precision expressed in terms of quantities
computed in Eqs. (1), (3), (4) and (6). Substituting and sim-
plifying, we obtain:

R =


cpos

c̃
, if cpos < c̃

1, otherwise
(11)

which we can rewrite as:

R =
min(cpos, c̃)

c̃
. (12)

Again, this quantity is averaged in the same way as counting
precision to obtain the final formula reported in the paper.

B. Derivation of Normalized Mean of Negative
predictions (NMN)

NMN, as reported in the paper, is the absolute counting
error computed by prompting the model with the negative
classes normalized by the ground truth of the positive class.
Formally, the main involved quantity computed for each im-
age Ii prompted with the negative class Pj is given by:

nij =
|cij − c̃neg

ij |
c̃i

, i ̸= j (13)

where c̃neg
ij is the ground truth corresponding to the image

prompted with the negative class, which is identically zero
for i ̸= j. Therefore, the numerator simplifies from |cij −
c̃neg
ij | to cij (we assume the count predicted by the model is

always positive). All the Nij are then averaged over all the
N images, each one prompted with all the possible N − 1

negative prompts:

NMN =
1

N

N∑
i=1

1

N − 1

N∑
j=1
j ̸=i

nij (14)

=
1

N

N∑
i=1

1

N − 1

N∑
j=1
j ̸=i

cij
c̃i

(15)

=
1

N(N − 1)

N∑
i=1

1

c̃i

N∑
j=1
j ̸=i

cij (16)

which is the Eq. 2 reported in the paper.

C. DAVE Inference Details
We performed small changes to the inference code to

prepare the DAVE model for our benchmark. This small
update drastically improved DAVE on PrACo, unblocking
its full potential.

Indeed, although DAVE has been designed to be resilient
to images with multiple classes, the method assumes that it
is prompted by one of the classes that are surely present in
the image. In these cases, the model just considers the ob-
ject class whose CLIP embedding is more similar to the pro-
vided prompt instead of allowing for zero matches based on
a certain score threshold. If DAVE is prompted with a class
not present in the one-class-only image, the original imple-
mentation ignores the CLIP-based proposal filtering. The
outcome is catastrophic, especially for our negative test, as
DAVE outputs the same count regardless of the input text
prompt. For this reason, we modified DAVE to filter the pro-
posals associated with the sole present cluster based on the
input text. To compute the threshold to decide if the clus-
ter proposals match the provided caption, we also fed the
model with the positive class to have a CLIP upper-bound
score as a reference. As in the original implementation, the
proposals are kept if their CLIP score is higher than 85% of
this reference CLIP score. Notice that this inference proce-
dure would be difficult in real scenarios in which the posi-
tive class is not known a-priori. However, since the positive
class can be obtained through image classification – and im-
age classification is a well-established and solved problem
in computer vision – we assume that, in real use-case sce-
narios, it is possible to derive a reliable positive class label
using state-of-the-art image classifiers.

We also noticed that the outcome on our benchmark is
very dependent on the clustering threshold τ used during the
spectral clustering phase. Particularly, we observed that the
original τ = 0.17 was too high to correctly detect the two
clusters corresponding to the two images in the mosaics.
For this reason, in the main paper experiments, we set τ =
0.10.



Table 1. We report the results for DAVE on the test set of FSC147, varying the clustering threshold τ (lowering it from the original 0.17
to 0.10, and modifying the inference procedure (Mod. Inf. column) obtained by feeding the model also with the reference positive class.

Negative Test Mosaic Test Classic

τ Mod. Inf. NMN ↓ PCCN ↑ CntP ↑ CntR ↑ CntF1 ↑ MAE ↓ RMSE ↓

0.17 ✗ 1.05 37.02 0.686 0.811 0.700 15.16 103.49
0.10 ✗ 1.05 37.02 0.743 0.805 0.732 15.16 103.49
0.17 ✓ 0.08 97.45 0.831 0.803 0.784 15.11 103.48
0.10 ✓ 0.08 97.62 0.843 0.799 0.790 15.23 103.53

In Tab. 1, we report an ablation study about the model’s
behavior (i) with and without modification to the inference
strategy, and (ii) the original and changed τ parameter. As
we can notice, the clustering threshold does not affect the
negative test, where only one object cluster is always found.
Our modification, which injects positive classes as a refer-
ence, originates a strong model from the negative test per-
spective, with an NMN of only 0.08. Concerning the mo-
saic model, the lowering of the tau threshold, together with
the improved inference procedure, helps raise the counting
precision and, in turn, the counting F1-score by more than
12% with respect to the original implementation.

It is interesting to notice how these hyper-parameters
have no effect on the class-specific classic counting metrics
(MAE and RMSE), again proving the need for benchmarks
like PrACo to effectively evaluate prompt-based counting
models.

D. TFPOC Density Maps Creation

TFPOC is a detection-based method that localizes ob-
jects to count using the powerful SAM model [1]. For this
reason, it never really computes a density map, which is the
main output interface used to prepare the predictions for the
mosaic test and produce the qualitative visualization. To
prepare the density maps, we simply plotted the region cen-
ters as small dots, each having an area of 1 (as is usually
done for preparing ground truth density maps from dot an-
notations).

E. More Qualitative Results

In Fig. 1, we present four images provided as input to the
model, each paired with different negative classes. Notably,
all methods except DAVE count the negative classes, often
predicting a number of instances comparable to – or even
exceeding – the ground truth for the positive class. In con-
trast, DAVE consistently predicts zero instances, demon-
strating the effectiveness of the proposed inference modi-
fication.

In Fig. 2, we present additional results from the mosaic
test, illustrating how the models often struggle to count ex-

clusively the correct class. Notably, while DAVE demon-
strates strong performance in distinguishing the sole posi-
tive class from negative ones and achieves impressive re-
sults on the PrACo metrics for the mosaic test, it occasion-
ally suffers catastrophic failures, incorrectly swapping the
positive class with a negative one.
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Figure 1. For each model, we report the density maps obtained when probing them with four different negative classes (eggs, elephants,
keyboard keys, sunglasses) reported in the right-hand side of each row.
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Figure 1. For each model, we report the density maps obtained when probing them with four different negative classes (sea shells, sauce
bottles, skis, potato chips) reported in the right-hand side of each row (cont).
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Figure 2. For each model, we report the output density maps for three different (mosaic, input prompt) pairs. In each figure, the count
reported in the blue box is cpos

ij , while the count reported in the red box corresponds to cneg
ij .
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Figure 2. For each model, we report the output density maps for three different (mosaic, input prompt) pairs. In each figure, the count
reported in the blue box is cpos

ij , while the count reported in the red box corresponds to cneg
ij (cont).
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