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Figure 1. Scatter plot detailing the relation between the ground
truth DMOS and our model’s prediction when trained on cross-
validation of BVI-VFI dataset in a full-reference setting. First
row from left to right: 30fps, 60fps, 120fps. Second row from left
to right: DL, non-DL and Overall.

1. Additional details on experiments

1.1. Experiment results revisited

In our paper, we included cross-validation results in the
BVI-VFI dataset for our model in full- and no-reference set-
tings. This includes the PLCC and SRCC values on 30fps,
60fps, 120fps, non-DL, DL and Overall categories. As a
supplement to these results, we also provide scatter plots
for each of these categories to better visualize the correla-
tion between our model’s predictions and the DMOS values
provided by human participants. The linear trend can be ob-
served in Fig. 1 and Fig. 2, the scatter plots for the full- and
no-reference settings respectively.

1.2. Cross-dataset evaluation on VFIPS and BVI-
VFI

In addition to cross-validating the candidate models on
the BVI-VFI dataset, the BVI-VFI paper also performs a
cross-dataset evaluation for each candidate model, mean-
ing that the models are not trained on any subset of the
BVI-VFI dataset. For our additions to the list in Tab.
1, namely LPVPS [2], we use the publicly available pre-

Figure 2. Scatter plot detailing the relation between the ground
truth MOS and our model’s prediction when trained on cross-
validation of BVI-VFI dataset in a no-reference setting. First row
from left to right: 30fps, 60fps, 120fps. Second row from left to
right: DL, non-DL and Overall.

trained LPVPS weights for LPVPS results. Namely Ours,
we also train our model on the VFIPS dataset [2] to utilize
the same settings as LPVPS, except for the training epochs.

The experiment is conducted in both full- and no-
reference settings. Full-reference results displayed in Tab. 1
indicate that deep learning-based models such as our model
and ST-GREED [4] yield a mediocre performance when
they are not trained specifically for the task at hand. Follow-
ing this trend, all models, including ours, perform poorly
in a no-reference setting as seen in Tab. 2. Our model
underperformed that, unlike the performance when cross-
validating on the BVI-VFI dataset.

Our interpretation of these findings (in Tab. 1 and Tab. 2)
is that the datasets contain significant domain gaps due to
differing methodologies that have been utilized during sub-
jective data collection. Specifically, the BVI-VFI dataset
employs the Double Stimulus Continuous Quality Scale
(DSCQS) methodology, while the VFIPS dataset uses Two
Alternative Forced Choice (2AFC) scores. This difference
in data collection methods (domain gap) between the two
datasets hinders the investigation of the models’ generaliz-
ability.
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Table 1. The performance of cross-dataset evaluation (full-reference quality metrics). Our model and LPVPS are trained on the
VFIPS dataset and tested over all the DMOS values in the BVI-VFI dataset. No subset of the BVI-VFI dataset is used during train-
ing. Best models and second best models are marked accordingly.

30fps 60fps 120fps non-DL DL Overall
Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

FAST 0.54 0.49 0.65 0.73 0.61 0.72 0.47 0.45 0.76 0.77 0.63 0.70
PSNR 0.52 0.47 0.60 0.67 0.55 0.63 0.49 0.44 0.68 0.70 0.58 0.65
FRQM 0.50 0.44 0.60 0.64 0.57 0.62 0.82 0.80 0.47 0.49 0.50 0.58

FovVideoVDP 0.45 0.42 0.55 0.64 0.51 0.61 0.58 0.54 0.61 0.66 0.56 0.64
FloLPIPS 0.49 0.47 0.57 0.59 0.58 0.61 0.46 0.43 0.63 0.67 0.58 0.61

GMSD 0.52 0.49 0.58 0.65 0.53 0.63 0.47 0.40 0.66 0.68 0.57 0.63
C3DVQA 0.34 0.25 0.45 0.57 0.42 0.66 0.41 0.37 0.49 0.60 0.43 0.54

SpEED 0.40 0.48 0.51 0.67 0.53 0.63 0.32 0.43 0.59 0.70 0.57 0.64
ST-GREED 0.16 0.11 0.33 0.14 0.27 0.03 0.11 0.06 0.30 0.08 0.26 0.06

LPVPS 0.19 0.19 0.28 0.34 0.27 0.28 0.23 0.25 0.29 0.30 0.26 0.29
Ours 0.56 0.53 0.66 0.65 0.68 0.61 0.32 0.32 0.69 0.69 0.63 0.62

Table 2. The performance of cross-dataset evaluation (no-reference quality metrics). Our model is trained on the VFIPS dataset and
tested over all the MOS values in the BVI-VFI dataset. No subset of the BVI-VFI dataset is used during training. Best models and
second best models are marked accordingly.

30fps 60fps 120fps non-DL DL Overall
Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BRISQUE 0.16 0.01 0.15 0.00 0.15 0.08 0.14 0.13 0.17 0.06 0.12 0.00
ChipQA 0.11 0.03 0.26 0.03 0.16 0.06 0.05 0.01 0.12 0.05 0.12 0.03

VIDEVAL 0.11 0.05 0.10 0.04 0.08 0.05 0.23 0.19 0.05 0.03 0.06 0.04
deepIQA NR 0.18 0.14 0.11 0.11 0.07 0.04 0.06 0.02 0.12 0.11 0.08 0.06

NIQE 0.19 0.05 0.23 0.12 0.18 0.03 0.22 0.19 0.15 0.03 0.15 0.08
VIIDEO 0.12 0.12 0.28 0.12 0.30 0.22 0.15 0.04 0.31 0.29 0.23 0.19
FastVQA 0.33 0.13 0.21 0.29 0.31 0.28 0.38 0.38 0.17 0.19 0.22 0.25

Ours (no-ref) 0.13 0.13 0.17 0.19 0.15 0.09 0.09 0.1 0.17 0.2 0.14 0.17

1.3. Cross-validation details

In our experiments, where we compare our model with
other general-purpose video and image quality assessment
metrics, our results are obtained as a result of repeated ex-
periments on 20 splits of cross-validation on the BVI-VFI
dataset [1]. To recreate the experiment settings used in the
BVI-VFI paper, 80% of the 36 source videos in the BVI-
VFI dataset are used for training and the remaining 20% are
used for testing. This process is repeated 20 times instead
of 1000 times in the BVI-VFI paper, to keep our training
and testing times within a reasonable amount. Due to time
constraints, this process is repeated 16 times instead for our
cross-validation experiments regarding our model with op-
tical flow in Tab. 3.

To maintain reproducibility, all 20 splits are saved and
reused for all experiments in which training is performed
over BVI-VFI. Fig. 3 shows the number of occurrences for
each subject in training and testing splits. On average, every
subject appears in the training set 15.56 times with a stan-

dard deviation of 1.95 compared to an average of 4.44 times
in the test set with a standard deviation of 1.95. This is in
line with the expected number of occurrences of 16 times in
the training set and 4 times in the test set.

2. Integrating optical flow information
Due to the success of FAST [7], which is an optical

flow-based video quality assessment metric, in all our full-
reference experiments; we introduce optical flow into our
model as well. Due to the multi-scale nature of our model,
we decided to employ SPyNET [6], as it provides optical
flows in multiple resolutions.

As shown in Fig. 4, this requires a slight modification
to our feature extraction network. In addition to extracting
CLIP [5] features using the modified CLIP visual backbone,
we also extract the optical flow of reference and distorted
input videos. The extracted features are then concatenated
with the CLIP features in the channel dimension. The rest
of the network is not modified, as the only difference is that



Figure 3. Number of occurrences in training and testing datasets
for each subject. Blue bars indicate occurrences in the training set,
and orange bars indicate occurrences in the testing set. Horizontal
red line marks the 80% threshold.

our feature tensor in each level simply has two additional
channels. The element-wise absolute difference, the subse-
quent concatenation, and the Video Swin Transformers [3]
function in an identical manner.

As it can be observed from the cross-validation results in
Tab. 3, our model with optical flow is nonetheless outper-
formed by our model without optical flow in all categories
except in non-DL. Although we choose to employ SPyNET
due to its multi-resolution output which pairs nicely with
our multi-scale architecture, it should nevertheless be noted
that the SPyNET was developed in 2017. Therefore, an in-
teresting topic for potential future research would encom-
pass the implementation of a more recent optical flow algo-
rithm in a multi-resolution setting, to truly assess the contri-
bution of optical flow for task-specific video quality assess-
ment.

3. Computational cost and performance
Due to possessing a considerably larger feature extrac-

tion network, our model exhibits a 55% slower per-frame
inference time during evaluation compared to LPVPS, with-
out speed optimization. However, it is worth noting that
we achieve the reported performance with only 5 epochs of
training, each taking ∼ 20 minutes, compared to 20 epochs
of ∼ 8 minutes for LPVPS. This reduces the total training
time from ∼ 160 minutes for LPVPS to ∼ 100 minutes for
our model.

Moreover, although our full-reference performance re-
mains comparable to other methods, such as FAST [41], we
can observe this in Tab. 6 of the main paper that our model
offers 3% to 36% performance increase compared to the
second-best method in all categories except non-DL in no-

reference settings. We believe that the flexible nature and
retention of no-reference performance of our model should
also be considered when evaluating its overall performance.

References
[1] Duolikun Danier, Fan Zhang, and David R. Bull. BVI-VFI:

A video quality database for video frame interpolation. IEEE
Trans. Image Process., 32:6004–6019, 2023. 2

[2] Qiqi Hou, Abhijay Ghildyal, and Feng Liu. A perceptual qual-
ity metric for video frame interpolation. In European Confer-
ence on Computer Vision, pages 234–253. Springer, 2022. 1

[3] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 3192–3201. IEEE, 2022. 3

[4] Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu
Adsumilli, and Alan C. Bovik. ST-GREED: space-time gen-
eralized entropic differences for frame rate dependent video
quality prediction. IEEE Trans. Image Process., 30:7446–
7457, 2021. 1

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[6] Anurag Ranjan and Michael J. Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 2

[7] Jinjian Wu, Yongxu Liu, Weisheng Dong, Guangming Shi,
and Weisi Lin. Quality assessment for video with degradation
along salient trajectories. IEEE Trans. Multim., 21(11):2738–
2749, 2019. 2



Figure 4. Modified architecture with optical flow.

Table 3. Cross validation performance of our model with optical flow over all the DMOS values in BVI-VFI dataset. Best models and
second best models are marked accordingly.

30fps 60fps 120fps non-DL DL Overall
Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

LPVPS 0.45 0.61 0.63 0.65 0.65 0.58 0.32 0.36 0.61 0.66 0.53 0.61
(0.12) (0.13) (0.11) (0.09) (0.14) (0.11) (0.12) (0.11) (0.11) (0.09) (0.11) (0.09)
0.65 0.59 0.70 0.74 0.70 0.68 0.32 0.40 0.73 0.75 0.69 0.72Ours w/ optical flow (0.11) (0.10) (0.07) (0.06) (0.09) (0.11) (0.08) (0.08) (0.08) (0.08) (0.09) (0.08)
0.67 0.63 0.76 0.76 0.75 0.67 0.31 0.34 0.77 0.76 0.73 0.72Ours w/o optical flow (0.11) (0.10) (0.08) (0.07) (0.07) (0.12) (0.09) (0.10) (0.07) (0.07) (0.08) (0.07)


