
Supplementary Materials: ANTHROPOS-V: benchmarking the novel task of

Crowd Volume Estimation

We supplement the main paper by outlining further notes

on the SMPL fitting process and an additional experiment

on estimating volumes of single body parts (Sec. 1, 2). We

complement Sec. 3.2 of the main paper with additional re-

marks on the task’s evaluation metrics (Sec. 3, 4). In ad-

dition, we show that ANTHROPOS-V can also serve as

a benchmark for the tasks of Crowd Counting and Hu-

man Mesh Recovery (HMR) (Sec. 5). Then, we illustrate

more details on the implementation of baselines (Sec. 6),

and we provide additional qualitative results, encompass-

ing both success and failure cases on real and synthetic im-

ages (Sec. 7, 8). Additionally, we include some sample im-

ages from ANTHROPOS-V (Sec. 9). Finally, we present a

cross-dataset evaluation, other remarks on CVE vs. Crowd

Counting, and a tentative approach to leverage temporal in-

formation in CVE (Secs. 10, 11, 12).

1. Further notes on the SMPL fitting process

The process of fitting SMPL meshes to characters, par-

ticularly in complex environments such as the Grand Theft

Auto V (GTA-V) game, involves a complex combination

of techniques from 3D modeling, computer vision, and ma-

chine learning.

We begin by collecting all the pre-existent meshes in the

GTA-V game. The characters are identified by a name and a

list of eleven variations that, in turn, express the contingent

appearance of the character. It is worth noting that charac-

ters with the same name and different appearances do not

necessarily share the same volume. Hence, we fit an SMPL

mesh to all characters’ variations appearing in each scene.

Initially, our fitting method retrieves characters’ data, in-

cluding their 3D models and texture information. The 3D

models are then converted into the widely-used OBJ format

(see Fig. 2, the first image of each sequence) accompanied

by MTL files, which are required for defining the materi-

als and textures of the model. As in [12], our objective is to

achieve a tight fit that closely conforms to exposed bare-skin

body parts such as the head or uncovered arms. Simultane-

ously, we seek a more relaxed fit in clothed body regions

to diminish the impact of the added thickness introduced

by clothing on the overall body volume. To perform this

fitting process, we need both a 3D pose prior and knowl-

Figure 1. Renders from the SMPL mesh fitting process on a sin-

gle character. The first line represents the renders, the second

shows the estimated 2D pose for each render and the third is the

Graphonomy output of skin segmentation (marked in red), as op-

posed to the dressed body segmentation (marked in green). Shoes

are forced to be “skin” points to improve the fitting.

edge of which vertices in the GTA-V mesh represent skin

or clothing. Thus, we initiate the process by generating 10

visual renders of the GTA-V 3D characters. This is achieved

by moving the camera around the textured 3D mesh of the

characters, as depicted in the first line of Fig. 1.

Then, the pose estimation process exploits [2] to predict

the character’s 2D pose in each rendered image, as depicted

in the second line of Fig. 1. This 2D pose data is lifted

into a three-dimensional space, giving a complete spatial

representation of the character’s posture. Next, the process

of dividing a character’s mesh into skin and clothes ver-

tices leverages [5] to segment each of the 10 renderings (see

Fig. 1, third line). The resulting segmentation is reprojected

onto the mesh to label each vertex.

Before fitting the SMPL mesh, the character’s gender

is determined, which ensures the accuracy of the SMPL

model, as these models are gender-specific. The SMPL fit-

ting involves aligning a standard human body model to the

character’s 3D pose and shape. This step requires meticu-
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Figure 2. Qualitative outcomes of the SMPL fitting process. Each image features: the original GTA-V character (first mesh), the output of

the SMPL fitting process (second mesh), and an overlap of the GTA-V character with the SMPL result, in a front-facing view (third mesh),

and in a backward-facing view (fourth mesh).

Figure 3. A SMPL mesh from ANTHROPOS-V. Different body

parts are highlighted in different colors. Orange dots represent the

keypoints associated with each body part.

lous adjustments to ensure that the SMPL mesh accurately

follows the contours and posture of the character. Indeed,

following [12], we employ two different loss functions to

constrain the SMPL within the GTA-V mesh. The first loss

is applied to the retrieved skin vertices, where we impose a

severe fitting. The second applies to the clothes vertices,

where we aim to have a looser fit so that these vertices

would not penetrate the original mesh while remaining suf-

ficiently close to it. Once the fitting process is over, the vol-

ume of the fitted SMPL mesh is computed using Blender [3]

Python API, which calculates the volume within a mesh. A

qualitative assessment of our fitting is present in Fig. 2. It

is worth noting that our SMPL meshes typically lie beneath

the attire of the GTA-V characters, with minimal penetra-

tion occurring primarily at skin vertices. This penetration is

expected since we want a tighter fit in these specific areas.

Furthermore, to assign volume labels to individual body

segments, we partition SMPL meshes into nine 3D parts, as

illustrated in Fig. 3. The segmentation process relies on the

body segmentation mappings presented in [10]. These map-

pings provide the indices of vertices corresponding to each

body part, enabling the identification of boundary vertices

situated between adjacent body parts. We split the meshes

into disjointed body parts along these identified boundaries.

Since boundary vertices often do not lie on a common plane,

we identify the plane that traverses the maximum number

of them while reporting the minimum distance from the

non-traversed boundary vertices. Finally, we employ these

planes to split the meshes into distinct body parts and com-

pute their volumes.

2. Further Analysis of Crowd Volume Estima-

tion Models

Body Part

Metric Head Arms Forearms Torso Thighs Calves

MAE 19.161 29.230 55.504 398.73 90.072 280.22

PP-MAE 1.1036 1.6920 3.6455 21.504 6.7060 20.707

Table 1. Volume error for each part of the body. The results are

reported in dm3.

To further investigate the performance of STEERER-V

on Crowd Volume Estimation, we conducted additional ex-

periments to assess its ability to localize volume within im-

ages. Specifically, we divided the images into random-scale

patches and evaluated whether STEERER-V could accu-

rately allocate the correct volume to each patch. The results

(MAE: 130.2, PP-MAE: 5.8) are consistent with those from

our main experiments, demonstrating that the model effec-

tively distributes volume across the correct individuals.

Additionally, we assess STEERER-V capability to esti-

mate the volume of single body parts. Specifically, we train

our proposed model to estimate the volume of the single

body parts’ split presented in Sec. 4.3 of the main paper.

Results of this experiment are reported in Table 1. While

the error on the estimated volume of the head and arms is



Model RMSE

CLIFF [8] 862.4

BEDLAM-CLIFF [1] 827.1

ReFit [17] 708.3

Oracular CLIFF [8] 473.9

Oracular BEDLAM-CLIFF [1] 459.5

Oracular ReFit [17] 412.7

CB+(I)× V̄D 638.29

Bayesian+ [11] 904.23

P2P [15] 743.81

MAN [9] 915.64

STEERER [6] 643.10

Oracular C(I)× V̄D 254.91

STEERER-V [6] 269.39

Table 2. Results on ANTHROPOS-V, reported in dm3. Methods

are divided into HD+HMR, Crowd Counting, and our proposed

approach. Gray-out lines rely on some oracular information and

shouldn’t be directly compared with the other results.

low, other parts like the torso and thighs expose a greater

error due to a superior volume occupancy and loose-fitting

clothes, rendering the correct estimation more challenging.

Other body parts like calves and forearms have a high prob-

ability of being partially occluded or self-occluded, leading

to a higher error compared to body parts with nearly the

same volume coverage.

3. Further notes on the metrics

In Sec. 3.2 of the main manuscript, we introduced the

minimal set of metrics for the Crowd Volume Estimation

(CVE) task, particularly Mean Absolute Error (MAE) and

Per-Person Mean Absolute Error (PP-MAE). We are aware

that some literature on the task of Crowd Counting also re-

ports the Root Mean Squared Error (RMSE). We argue that

given a set of images {Ik}, RMSE is redundant for CVE,

as it is proportional to MAE. We show this in Eq. 1, where

{Vk} is the total volume associated with each image, {V̂k}
the estimated one, and AE(k) is the absolute error of the

k-th image.
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Nonetheless, we extend Table 1 of the main paper with

Table 2, showing the RMSE for the proposed models.

4. Qualitative Evaluation: MAE vs PP-MAE

In this section, we complement the analysis presented

in Fig. 2 of the main paper by providing qualitative ex-

amples of instances where the MAE and PP-MAE exhibit

notable misalignment, deviating significantly from the pri-

mary trend observed in the graph.

In Fig. 4, we present qualitative results illustrating that

the alignment between these two metrics significantly de-

teriorates under rainy and dark environmental conditions.

Specifically, in the first scenario, image distortion caused by

raindrops leads STEERER-V to incorrectly infer volumes at

a distance (as shown in Fig. 4a), while the glare from light-

nings complicates the model’s ability to detect and assess

human figures (refer to Fig. 4b). In the context of darkness,

the model can confuse environmental objects with humans,

such as mistakenly identifying a tree situated between two

individuals as a person (illustrated in Fig. 4c), along with

other inaccuracies demonstrated in Fig. 4d and Fig. 4e.

5. Other tasks with ANTHROPOS-V

Crowd Counting MAE RMSE

Bayesian+ [11] 3.50 5.87

P2P [15] 8.38 11.7

MAN [9] 3.54 5.88

STEERER [6] 5.56 6.94

HMR MPJPE PA-MPJPE PVE

CLIFF [8] 807.6 165.9 940.8

BEDLAM-CLIFF [1] 794.5 165.7 991.0

ReFit [17] 397.2 310.2 416.3

Table 3. Results of Crowd Counting and Human Mesh Recovery

on ANTHROPOS-V. MPJPE, PA-MPJPE, and PVE are measured

in millimeters.
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Figure 4. Qualitative evaluation including images corresponding to the points in the scatter plot in Fig. 2 of the main paper for which MAE

and PP-MAE deviate from the primary trend.



We evidence that ANTHROPOS-V can further serve as

a benchmark for Crowd Counting and Human Mesh Recov-

ery (HMR), as we report in Table 3.

The low performance of HMR methods stems from the

increased complexity in the lighting and weather condi-

tions, the number of individuals in the scene, and the

large number of occlusions that invalidate the person-

detection step leading to inaccurate predictions. CLIFF

and BEDLAM-CLIFF particularly struggle to estimate the

global scale and orientation, with an MPJPE value of 807.6
mm and 794.5 mm, respectively; the error on the prediction

drastically reduces to 165 mm after the Procrustes align-

ment. For what concerns Crowd Counting, Bayesian+ ex-

hibits the best performance, yielding an average error of 3.5
individuals per frame and surpassing more recent methods

such as STEERER.

6. Further notes on the baselines

In this section, we add some notes about the results of the

HD+HMR baselines (Sec. 6.1), and the architectural adap-

tation of the Crowd Counting models, which we modify for

the CVE task (Sec. 6.2).

6.1. About the low performance of HD+HMR base
lines for CVE

Here we focus on BEDLAM-CLIFF [1].

As evidenced in Fig. 5a, the performance of the human

detection model has a critical impact on the overall CVE re-

sults of the HD+HMR models. One of the failure cases orig-

inates from either a missing detection, as for the woman on

the left of the pillar, or multiple predicted bounding boxes

of the same instance, as for the subjects in the foreground.

Also, even when the error deriving from the human de-

tection step is driven to zero, like in the oracular experi-

ment described in Sec. 5.1 of the main paper, BEDLAM-

CLIFF underperforms when compared with STEERER-V.

Indeed, occlusions, color contrast, and extreme light con-

ditions harm the body shape regression, which in turn in-

creases the volume estimation error, as Fig. 5b empirically

confirms; for example, the woman on the left of the image

is assigned with an excessively skinny SMPL mesh, and the

people partially occluded by the central round terrace are

approximated with an amorphous mesh.

Finally, the HD+HMR baselines yield more parameters

than the baselines adapted from Crowd Counting, as shown

in Table 4.

6.2. Details on the architectural adaptation of
Crowd Counting baselines

We train all models on a single NVIDIA A100 GPU until

convergence. Both the original codebases and the edited

code leverage the PyTorch framework.

Table 4 provides further implementation details.

Model #Params LR

YOLOv7 165M 1× 10−5

CLIFF 247M 5× 10−5

BEDLAM-CLIFF 247M 5× 10−5

ReFit 240M 1× 10−4

MAN 40.4M 1× 10−5

Bayesian+ 21.5M 1× 10−5

P2P-net 21.6M 1× 10−5

STEERER 64.6M 5× 10−7

Table 4. Details on the baselines employed for CVE. The num-

ber of parameters of the HD+HMR baselines includes the one of

YOLOv7 [16], for which we report the parameters in gray on top

of the table.

Bayesian+ and MAN: These models have nearly the

same base architecture, so we modify them in the same way.

These architectures are described by the green blocks in

Fig. 6, with only MAN employing the Transformer Encoder

with the Learnable Region Attention block. Bayesian+ and

MAN are both Crowd Counting architectures. Hence, to

adapt them to the CVE task, we define an additional branch

besides the one performing counting. The orange blocks

in Fig. 6 illustrate the novel branch. Since these models are

trained on 512×512 image crops, Max Pooling is employed

for computing volume on larger-sized images, while Point-

wise Convolution compresses tensors to a single dimension.

Furthermore, we alter the pre-processing pipeline to com-

pute both counting and volume-related ground truths on

which both models are supervised, i.e., the total number of

persons in the frame and the total volume occupied by them,

respectively.

Notice that the counting branch is necessary because we

use its output, which is the estimated density map, as in-

put for our additional volume regressive branch. For both

these Bayesian-based models, the loss we use for the vol-

ume branch is the L1 loss between the regressed and the

ground truth volumes. We also keep the counting losses of

Bayesian+ and MAN as described in their papers.

P2P-Net: To adapt P2P-Net for the CVE task, we expand

the model’s capabilities to predict x and y coordinates for

each identified head with a v label indicating the volume

of the corresponding person. To encourage accurate pre-

dictions for the volume (v) rather than solely emphasizing

x and y predictions, we introduce an additional loss com-

ponent. This supplementary component is an L1 loss com-

puted between predicted and ground truth volumes. To tune

the influence of this loss, we apply a weighting coefficient

λ, determined through experimentation to be optimal at the

value of 1e-4.



(a)

(b)

Figure 5. Qualitative results of BEDLAM-CLIFF [1] on ANTHROPOS-V when provided with the predicted bounding boxes of

YOLOv7 [16] (we omit some of them for clarity). We highlight in red some of the instances that have not been detected and in blue

those that have been detected multiple times.
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Figure 6. Bayesian+ and MAN modified architectures. The Transformer Encoder blocks with Learnable Region Attention are used only

by MAN. The green layers are kept as they are in the original architectures. Orange layers are part of the additional branch tailored on the

CVE task. The estimated density map (Dest) is reduced with summation to a single value and counting losses are calculated on it. Dest

is also used as input for our additional volume-related branch to regress the volume occupied in a frame. Finally, we calculate the L1 loss

between regressed and ground truth volumes.

7. Qualitative Evaluation: real-world images

We present some examples of STEERER-V’s zero-shot

predictions on the real-world images of CrowdHuman [13]

dataset. We remark that this dataset lacks ground-truth vol-

ume annotations, which are roughly approximated by im-

puting the average real-world volume to each individual in

the images, leveraging the statistics from [14] (cf. Sec 5.3

of the main paper). It is worth noting that such an approxi-

mation strongly assumes that people are all similar in size to

the average adult and that genders are equally represented

in crowds.

As Fig. 7 shows, STEERER-V reasonably estimates the vol-

ume of adults in indoor environments, large crowds, and

with severe occlusions, diverging from the mean to take

into account diverse builds, e.g., the men in the foreground

of the first row, and uneven balance of genders, e.g., the

crowds displayed in the second and third row. Our model

fairly performs even with crowds of kids, totally absent

from the GTA-V game. The image in the second row of

Fig. 9 stresses how the model assigns greater volume to the

adults in the right foreground than to the surrounding chil-

dren.

STEERER-V struggles with low-quality images, such as in

the example of Fig. 8.



Figure 7. Zero-shot results of STEERER-V on CrowdHuman [13] images when predicting the volume of adults. On each predicted volume

map we superimpose the difference between the average real-world per-person volume and the predicted per-person one.

Figure 8. Zero-shot result of STEERER-V on a CrowdHuman [13] image. STEERER-V underestimates the total volume due to the low

quality of the image, the domain gap, and the severe occlusions. On the predicted volume map we superimpose the difference between the

average real-world per-person volume and the predicted per-person one.



Figure 9. Zero-shot results of STEERER-V on CrowdHuman [13] images when predicting the volume of builds that have not been seen

at train time, e.g., kids. On each predicted volume map we superimpose the difference between the average real-world per-person volume

and the predicted per-person one.

8. Qualitative Evaluation: additional results on

ANTHROPOS-V

In Table 5, we present additional qualitative compar-

isons between the baseline model, STEERER, and our pro-

posed model, STEERER-V. The comparison demonstrates

that when faces are clearly visible and occlusions are min-

imal, the performance of both models is similar, as shown

in the first and second rows of the table. However, in sce-

narios where occlusions occur, either due to other pedestri-

ans or environmental elements, STEERER-V outperforms

STEERER significantly, as evidenced from the third to the

sixth row. In these images, it is evident that STEERER

fails to attribute any volume to several individuals. More-

over, in the third row, we show that both models have

learned that, from bird’s-eye-view camera angles, environ-

mental elements like trees can hide persons. Nevertheless,

STEERER-V demonstrates superior robustness by not erro-

neously assigning any volume to the space obscured by the

upper part of trees, highlighting its enhanced capability in

handling such occlusions.



ANTHROPOS-V STEERER STEERER-V

Table 5. Visualization results of STEERER and STEERER-V on ANTHROPOS-V crowded images. STEERER’s density map highlights

volume on head positions, while STEERER-V’s density map emphasizes the volume spread on the whole body.



9. Examples of images of ANTHROPOS-V

ANTHROPOS-V GTA-V

Figure 10. Examples of frames from ANTHROPOS-V (left column) and original GTA-V footages (right column), as synthesized via [4].

Images on the left present a wider variety of people’s heights.



ANTHROPOS-V GTA-V

Figure 11. Examples of frames from ANTHROPOS-V (left column) and original GTA-V footages (right column), as synthesized via [4].

Images on the left present more diverse weather and lighting conditions and better details.



10. Cross Dataset Evaluation

In this section, we perform an additional experiment

that assesses the performance of the HR-HMR baselines

via Cross Dataset Evaluation. The next section will intro-

duce the additional datasets we leverage for this study, while

Sec. 10.2 describes the experiment’s outcomes.

10.1. HMR Datasets

AGORA [12] is a synthetic image dataset with diverse

adult and child characters with SMPL [10] annotation. The

recent BEDLAM [1] is a comprehensive synthetic video

dataset with 271 highly realistic and diverse SMPL-based

characters. In contrast to our dataset, they don’t target

large crowds, having a limited number of people per scene

(≤ 15, 10 in [12] and [1], respectively); hence, they are not

optimal for CVE, as we show in the next section.

10.2. Cross Dataset Evaluation

To assess the capabilities and applications of

ANTHROPOS-V, we conduct a cross-dataset evalua-

tion using the latest human datasets annotated with SMPL

meshes, specifically AGORA [12] and BEDLAM [1]. It is

important to note that these datasets predominantly feature

small groups of people, with an average of 3.66 individuals

per frame in BEDLAM and 9.08 in AGORA. Since these

datasets lack ground-truth volumes, we annotate the

volume based on the provided meshes. In our experiment,

we train STEERER-V on all three datasets and evaluate

the performance on each dataset’s test set. Fig. 12 displays

the error rates for each test set, highlighting how they

vary with the increasing number of people in a scene. As

shown in Fig. 12a, models trained on datasets with smaller

groups (represented by the green and blue lines) exhibit

less robustness when faced with scenes containing more

individuals. Conversely, Fig. 12b and Fig. 12c demonstrate

that STEERER-V, when trained on our crowd dataset,

maintains robustness regardless of the increasing number

of people in the image.

11. Decoupling Crowd Counting from Volume

Estimation

The CVE error metrics presented in this paper

(MAE/PPMAE) compare per-frame ground truth volumes

with model predictions. However, this error stems from two

main sources: missed detections and incorrect volume esti-

mations of individuals. To improve CVE models, both of

these factors must be addressed. To assess the contribution

of each error source to the overall error, we conduct an ad-

ditional experiment.

We aim to design an evaluation method applicable to all

the models proposed in this paper. HD+HMR models are

straightforward to adapt by removing the HD component

and using ground truth bounding boxes (bbox). However,

density-based models require additional steps. For these

models, we predict densities for the entire image, then crop

the corresponding ground truth bboxes for the individuals

involved, isolating their respective volumes. For all mod-

els, we consider only non-overlapping bboxes to prevent

volume duplication and report the resulting PPMAE.

To avoid penalizing models for detection errors, we ex-

clude any predicted volumes under 10 dm³ from being

counted as positives. Additionally, to facilitate easier de-

tection, we removed scenes from the ANTHROPOS-V test

set that contain significant occlusions or challenging light-

ing conditions, creating a refined test set called S1.

Furthermore, we constructed an additional test set, S2,

consisting exclusively of bird’s-eye view scenes, which

minimize occlusion and further simplify detection.

Table 6. Results on ANTHROPOS-V’s S1, S2 and whole test set

(FT). All the results are reported in dm3.

Model PPMAE (S1) PPMAE (S2) PPMAE (FT)

ReFit [17] 17.94 18.25 18.79

STEERER [6] 12.46 13.68 14.43

STEERER-V 6.67 3.39 6.73

In Table 6, we present the results of this experiment with

simplified detection. Notably, ReFit and STEERER show

error levels comparable to those on the full test set (FT),

highlighting that the primary source of their error lies in

evaluating individuals’ volume. In contrast, STEERER-

V’s performance improves by 50% on the easier detec-

tion set (S2), suggesting that its error is equally divided

between detection and volume estimation. Moreover, as

shown in Table 1 of the main paper, when comparing both

C(I)B+ × V D and ReFit with their oracular counterparts,

a similar ratio emerges, further confirming that volume es-

timation error accounts for half of the total error.

12. From Frames to Video

Lastly, we question if leveraging temporal informa-

tion can be beneficial in CVE. Specifically, we modify

STEERER-V to leverage two neighboring context-frames,

one before and one after the target frame. We align features

from context-frames to those of the target frame using the

method in [7] and feed the result into STEERER-V’s decod-

ing branch to estimate the total volume in the target frame.

We use STEERER-V’s pretrained weights, while the fea-

ture alignment module is trained from scratch. Despite be-

ing an initial attempt to incorporate inter-frame information,

this approach proves beneficial for CVE, reducing MAE by

5.27% and PPMAE by 4.22%.
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Figure 12. Error trends of STEERER-V with respect to the growing number of individuals.
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