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2ÉTS Montréal
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1. Extended results
For CIFAR-100C, TinyImageNet-C and VISDA our

model was compared with the same state-of-the-art ap-
proaches except TTT++ where the results were not repro-
ducible nor available: ResNet50 [3], PTBN [4], TENT [8],
TIPI [5], ClusT3 [2] and NC-TTT [6]. As per previous ex-
periments TTA methods were evaluated on the same pre-
trained ResNet50, while TTT approaches were trained us-
ing the same ResNet50 base architecture and the same train-
ing strategy.

1.1. VisDA

Table 1 reports the detailed results on the VisDA dataset.
ReC-TTT outperforms most approaches on average, with a
notable increase compared to the ResNet50 baseline with-
out adaptation (+25.81). On train→val and train→ test ,
NC-TTT performs better than ReC-TTT (≈ +1% on aver-
age). Moreover, the results demonstrate that TTT meth-
ods show greater robustness on complex datasets, such
as VISDA, compared to methods like Source, PTBN, and
TENT, which are more competitive on the CIFAR datasets.
This performance difference may be attributed to the recon-
struction task’s ability to capture more generalizable fea-
tures, while simpler approaches struggle to detect more sub-
tle domain shifts.

Table 1. Performance comparison with state-of-the-art on VISDA
dataset (%).

VISDA train→val VISDA train→ test Average

ResNet50 35.01 36.58 35.80
PTBN 54.53 53.63 54.08
TENT 58.13 57.04 57.59
TIPI 60.22 62.26 61.24
ClusT3 60.89 61.33 61.11
NC-TTT 62.49 62.57 62.53

ReC-TTT 62.06 61.12 61.59

*Corresponding author.

1.2. CIFAR-100C

Table 2 shows in detail the results and the comparison
with state-of-the-art approaches on all the perturbations of
CIFAR-100C. ReC-TTT the best results, demonstrating a
30% increase in AUROC after adaptation compared to the
baseline. This improvement surpasses the most recent state-
of-the-art approaches as ClusT3 and NC-TTT by 3%.

1.2.1 Number of adaptation iterations

Similarly to what was identified in previous studies [2, 6, 7]
and was confirmed for CIFAR-10C, also in the case of
CIFAR-100C the best results are obtained after 20 adapta-
tion iterations, while for some perturbation the same results
can be obtained also with less interaction, after 20 the re-
sults tend to remain invariant for all the different perturba-
tions. Figure 1 shows for all the corruption of CIFAR-100C
the results obtained at different iterations.

1.3. TinyImagenet-C

Table 3 reports the results obtained on TinyImagenet-C,
a dataset of 10.000 images with the same 15 corruptions
described for CIFAR10-C and CIFAR100-C, but with 200
classes. ReC-TTT outperforms all the other methods also on
this dataset, with a 2.46% improvement compared to NC-
TTT, the second-best-performing model.

2. On the contrastive loss performances
To show the impact of our contrastive approach we im-

plemented a TTT method based on the SimSiam [1] frame-
work. This solution only compares the features at the bot-
tleneck level and is based on a single encoder, followed by
a projection head and a predictor. The model was trained
with the Cross-Entropy loss and the SimSiam loss as auxil-
iary task. As reported in the paper presenting the SimSiam
technique [1], the loss is computed as the negative cosine
similarity between i) the features of the projector (fE) ex-
tracted by the original image and ii) the features of the pre-
dictor (fP ) of the augmented version of the image with a
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Corruption Type ResNet50 PTBN TENT TIPI ClusT3 NC-TTT ReC-TTT

Gaussian Noise 13.23 42.30 51.35 48.88 52.79 46.03 48.12
Shot Noise 15.46 43.30 52.63 50.61 52.91 47.04 50.43
Impulse Noise 7.89 37.41 45.39 43.80 45.54 41.53 45.29
Defocus Blur 27.36 67.46 69.44 68.72 66.66 67.00 71.21
Glass Blur 21.18 46.44 51.01 50.93 50.76 48.08 49.94
Motion Blur 38.18 64.21 67.27 66.63 62.92 64.31 68.86
Zoom Blur 32.81 66.68 69.33 68.84 65.42 66.24 69.91
Snow 44.85 55.52 60.47 59.51 56.65 58.70 60.21
Frost 31.56 54.76 58.35 57.90 56.91 58.55 60.16
Fog 32.79 56.77 62.29 61.12 53.95 57.73 62.22
Brightness 66.13 68.97 71.40 71.00 66.78 71.36 73.47
Contrast 11.87 63.47 65.63 65.17 56.46 61.53 67.06
Elastic Transform 48.87 57.93 60.07 59.94 59.07 60.25 62.37
Pixelate 26.70 59.75 64.06 63.56 62.26 61.17 63.61
JPEG Compression 48.88 52.45 57.84 57.79 59.34 55.69 57.05

Average 31.19 55.83 60.44 59.63 57.89 57.68 60.66

Table 2. Performance comparison with state-of-the-art on CIFAR-100C perturbations (%).

Figure 1. Performance (AUROC) reached by our method with different numbers of adaptation iterations on CIFAR-100C.

stop gradient on the predictor features. To have a fair com-
parison with ReC-TTT , we also used horizontal flip as aug-
mentation. During the adaptation phase, we adopted the
same auxiliary loss to adapt the encoder features for a total
of 20 iterations.

Table 4 shows that the SimSiam contrastive learning ap-
proach, although achieving some good adaptation perfor-
mances, does not achieve the same results as ReC-TTT . A
possible reason for this result is that SimSiam cannot fully
capture the domain shift, which is hidden in the whole rep-
resentation and not only at the bottleneck level. This is the



Corruption Type ResNet50 PTBN TENT TIPI ClusT3 NC-TTT ReC-TTT

Gaussian Noise 13.20 30.46 31.03 32.22 32.65 31.92 34.87
Shot Noise 16.28 32.26 33.07 34.27 34.72 34.47 36.60
Impulse Noise 7.49 20.80 21.87 23.04 22.78 22.78 26.09
Defocus Blur 16.71 33.09 34.20 31.98 29.08 25.28 31.09
Glass Blur 7.42 15.97 16.88 17.60 16.26 15.67 19.59
Motion Blur 27.71 43.09 44.40 43.54 43.92 43.39 45.55
Zoom Blur 20.98 39.76 40.89 40.01 41.17 40.46 42.53
Snow 31.00 36.94 37.39 38.18 42.97 43.46 40.33
Frost 36.28 39.29 40.21 41.43 45.32 45.51 44.59
Fog 16.40 31.51 32.52 32.82 37.85 37.68 33.08
Brightness 36.48 44.70 45.09 46.39 51.19 50.62 48.53
Contrast 2.59 12.22 12.91 10.71 2.27 2.27 8.32
Elastic Transform 28.93 39.42 39.83 40.68 41.60 41.47 44.91
Pixelate 37.00 47.78 48.50 48.95 37.00 39.31 52.96
JPEG Compression 47.04 47.78 40.88 50.21 50.57 50.91 53.32

Average 23.03 34.47 35.15 35.47 35.32 35.03 37.49

Table 3. Performance comparison with state-of-the-art on TinyImageNet-C perturbations (%).

Impulse Noise Brightness Pixelate Average

SimSiam 56.40 82.92 68.69 69.77

ReC-TTT 69.28 94.03 82.13 82.82

Table 4. On the contrastive loss. Qualitative results using Sim-
Siam contrastive approach on CIFAR-10C (%).

main difference with ReC-TTT that instead compares fea-
tures at different layers.
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