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1. Model Description

The encoder is a standard U-Net with 5 convolutional
layers for feature learning at different scales and downsam-
pling, followed by 5 layers for upsampling the learned fea-
tures, and a final convolutional layer to condense the num-
ber of channels back to 3 (see Figure 1). Skip-connections
between each downsampling layer and the corresponding
upsampling layer to avoid gradient-fading issues. The input
is a 400×400×3 tensor representing an RGB image, and
a 100-bit string as a message. The bit string is converted
into an image using a fully-connected layer, followed by an
upsampling operation. The result is concatenated into the
image tensor, resulting in a 400×400×6 input tensor, fed to
the U-Net, resulting in a residual image added to the input
cover image.

The decoder is a standard CNN with 7 layers for feature
learning, ending in 2 fully-connected layers to combine said
features and output the bit string representing the message
(see Figure 2). The decoder may be prepended by an STN
network to learn and fix spatial distortions introduced by
camera motion.

2. Printed Images

Images are printed on common office A4 paper sheets
with sizes of 3×3cm, 5×5cm, and 10×10cm. In order to
automatically detect the images, each one was augmented
by a magenta border 5 pixels wide on all sides. Figure 3
shows samples of printed images in three sizes.

3. Ablation Studies

We assess the effect of our proposed encoder loss func-
tion by running an ablation study where we measure the
impact of each term in the encoded image quality, see Ta-
ble 1 for results. Additionally, we compare these results
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with our proposed loss with 60% and 100% of the residual
added to the container images, to measure the impact of the
said residual on image quality. Finally, we show the results
of RoSteALS [1] and SSL [2] methods for reference. We
can see in Table 1 that our complete loss with 60% of the
residual (RiemStega60 column) presents the best results in
terms of image quality, followed by our loss with 100% of
the residual (RiemStega column). Compared to our model
with full residual, RoSteALS obtains comparable results for
all metrics, while SSL Watermarking comes close regarding
PSNR.

Regarding individual loss terms, the LPIPS term natu-
rally presents the best LPIPS score compared to the L2 and
Rloss terms. Rloss obtain better PSNR and SSIM com-
pared with L2. Using only the Rloss term presents PSNR
results comparable to StegaStamp while lacking in terms of
LPIPS and SSIM. Both L2 and LPIPS terms present SSIM
scores comparable to StegaStamp and RoSteALS, but lack
in terms of PSNR. These results indicate that the Rloss term
leads to less noisy images. In contrast, the LPIPS term leads
to better perceptual results besides higher structural simi-
larity between the encoded and cover images, justifying the
combination of these terms in our loss function.
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Figure 1. Encoder architecture used in our work. The model receives a 400×400×3 image and a 100-bit message. The message is
converted to floating-point, fed to a dense layer with 7500 nodes, reshaped to 50×50×3, and upsampled to match the image size. Finally,
this tensor is concatenated to form the input to a U-Net (400×400×6 tensor). The output of this U-Net is a residual image, shown on the
right, which is added to the container image.
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Figure 2. Decoder architecture employed in our work. The model receives a potentially encoded, 400×400×3 image, which is resized to
200×200×3 and, optionally passed to a Spatial-transformer Network (not illustrated here), where spatial transformations are mitigated.
Afterwards this transformed image is fed to a series of convolutional layers, and finally, two dense layers, which result in a bit array with
the decoded message.
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Figure 3. Samples of encoded images using RiemStega printed with size 10×10cm, 5×5cm, and 3×3cm in A4 paper sheets with magenta
borders for detection.

Table 1. The SSIM, PSNR, and LPIPS of 500 randomly selected images. The first three columns after Metric (Rloss, L2 Loss, and LPIPS
Loss) show the metric values for our model using these loss terms individually. The next columns, RiemStega and RiemStega60, show
the results of our loss with 100% and 60% of the residual image applied. Finally, the last columns show the results of RoSteALS [1] and
SSL [2] methods.

Metric Rloss L2 Loss LPIPS Loss RiemStega RiemStega60 StegaStamp RoSteALS SSL

SSIM ↑ 0,873 0,905 0,926 0,949 0,979 0,894 0,937 0,895
PSNR ↑ 28,503 25,943 25,574 30,031 34,387 28,470 30,360 32,620
LPIPS ↓ 0,080 0,189 0,030 0,024 0,013 0,029 0,027 0,050
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