TPP-Gaze: Modelling Gaze Dynamics
in Space and Time with Neural Temporal Point Processes
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We introduced TPP-Gaze, a scanpath prediction
method that models gaze dynamics as a neural temporal
point process. In the following sections, we provide ad-
ditional results showing evidence of the superiority of our
proposed approach compared to the state-of-the-art. Ad-
ditionally, we describe how the proposed approach can be
extended for the visual search task.

A. Additional Quantitative Results

Additional Metrics on OSIE, NUSEF, and FiFa. As
a complement of Table 3 of the main paper, we re-
port in Table 5 the results on OSIE, NUSEF, and FiFa
datasets in terms of SS and SED. Also for these metrics,
TPP-Gaze achieves the best results when compared with
models trained under the same settings and datasets. It is
also worth noting that, especially for the NUSEF and FiFa
datasets, our approach can achieve the best overall results
in terms of SS with and without duration.

Scanpath Statistics on MIT1003, NUSEF, and FiFa. As
discussed in the main paper, TPP-Gaze features scan-
path statistics that better align with human behavior when
compared with IOR-ROI-LSTM [3], DeepGazelll [7] and
Scanpath-VQA [2]. The same trend is appreciable from
Fig. 8. Notably, even when tested on MIT1003, NUSEF,
and FiFa, TPP-Gaze effectively models the long-tail dis-
tribution of both fixation durations and saccade amplitudes.
In contrast, other methods tend to capture only the aver-
age human gaze dynamics. An exception is DeepGazelll
on NUSEF, which achieves comparable results for saccade
amplitudes but does not model fixation duration.

Return Fixations Analysis on MIT1003, NUSEF, and
FiFa. Fig. 9 complements the analysis reported in the main
paper by showing the distribution of return fixations (RFs)
for the MIT1003, NUSEF, and FiFa datasets. In these set-
tings as well, TPP-Gaze demonstrates its ability to model
RF patterns effectively, generally presenting an RF distri-

OSIE NUSEF FiFa
SS (KL-Div) | SED] SS(KL-Div)| SED] SS(KL-Div)| SED |

w/Dur w/oDur  Avg ~ w/Dur w/oDur Avg  w/Dur w/oDur Avg

Itti-Koch [4] - 393 907 - 189 997 - 1470 865
CLE (Itti) [1,4] - 324 929 - 140 10.16 - 1262 886
CLE (DG) [1,8] - 365 923 - 135 10.07 - 1438 883
G-Eymol [9] 1228 295 800 199 053 802 1317 500 613
IOR-ROL-LSTM [3] 020 284 882 006 110 969 030 1244 827
DeepGazelll [7] - 251 847 - 104 938 - 1208 797
Scanpath-VQA [2]  0.02  0.09 755 002 010 839 003 044 681
DeepGazelll [7] - 252 857 = 104 942 - 1225 800
Scanpath-VQA [2] 029 031 970 006 0.8 1061 035 090 973

TPP-Gaze (GRU) 025 030 805 002 003 841 015 024  7.00
TPP-Gaze (Transf) 029 035 810 002 004 840 021 031  7.05

Table 5. Additional results on OSIE, NUSEF, and FiFa datasets.

Gray color indicates models trained under the same settings and
datasets. Within this group, bold values represent the best perfor-
mance for each metric. Underline values indicate the overall best
performance across all models and metrics.

bution that aligns better with human observers compared to
other methods.

B. Extending the Model to Visual Search

We extend the TPP-Gaze architecture to handle the vi-
sual search task by forcing the model to learn a task-specific
semantic representation of the input image (see Fig. 10).
Recall that the TPP-Gaze’s semantic representation mod-
ule consists of a DenseNet201 CNN backbone and a learn-
able readout network composed of three 1 x 1 convolutional
layers with 8, 16, and 1 channels, respectively. The obtained
spatial priority map is then projected to a fixed-dimensional
vector, z;, to obtain the j-th image semantic representation.
Specifically, the last layer performing a 1 x 1 convolution
is responsible for learning a (non-linear) combination of the
feature maps from the previous layers.

To guide the model toward a specific search objective,
we redefine the architecture to enable TPP-Gaze to learn
such a combination conditioned on a given text string. To
this end, we first obtain a linguistic embedding of the search
target using the ROBERTa language model. Let Fyqrget



Fixation Durations [ms] Saccade Amplitudes [pix]

—— Human —— Human
TPP-Gaze TPP-Gaze
—— Scanpath-VQA —— Scanpath-VQA
—— IOR-ROI-LSTM —— IOR-ROI-LSTM
—— DeepGazelll

z
@
c
9]
o
0 200 400 600 800 1000 0 200 400 600
Fixation Durations [ms] Saccade Amplitudes [pix]
| M M
@
c
0)
o
0 200 400 600 800 1000 200 400 600
Fixation Durations [ms] Saccade Amplitudes [pix]
z
@
c
I
a

K M
0 200 400 600 200 400 600 800

800 1000 0

Figure 8. Statistical properties exhibited by TPP-Gaze and other
methods relative to those of human observers, in terms of empir-
ical fixation durations and saccade amplitudes on MIT1003 (top
row), NUSEF (middle row) and FiFa (bottom row) datasets. For
consistency with the main paper, comparison against DeepGazelll
on MIT1003 is omitted.
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Figure 9. Return fixations analysis comparing TPP-Gaze with
other methods and human observers. Results are shown on
MIT1003 (top-left plot), NUSEF (top-right plot), and FiFa (bot-
tom plot) datasets.

be the embedding vector representing the search objective.
The readout network for the visual search model consists of
three 1 x 1 convolutional layers with 16, 64, and 256 chan-
nels, respectively. Thus, it is modified to output M = 256
feature maps. Let X = [xo;- -+ ;xar] € RM*9 represent
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Figure 10. Overview of TPP-Gaze model architecture ex-

tended to handle the visual search task. A linguistic embedding
(RoBERTa2) of the search target is employed to learn a task-drive
semantic representation (z;). The latter, together with the history
of past events (h,,), is used to simulated the next fixation position
and duration.

the matrix of flattened image features. The task-specific se-
mantic representation for the j-th image, z; 14rget, i then
obtained as follows:

w = softplus(MLP (F4rget))

M
(1)
Zj target = Z W;Xs.

C. Additional Qualitative Results

Additional qualitative results are depicted from Fig. 11
to Fig. 15 on COCO-FreeView, MIT1003, OSIE, NUSEEF,
and FiFa datasets, respectively. Each fixation is represented
by a circle, with its diameter proportional to the fixation
duration. For methods that do not model fixation duration,
circles are shown with a uniform size. The first fixation of
each scanpath is omitted. The qualitative results support
the findings of the main paper, highlighting the accuracy
of TPP-Gaze in predicting human-like scanpaths. Other
methods, instead, either overfit on a few salient objects,
especially people and faces in the case of Scanpath-VQA,
or predict scanpath trajectories containing fixations on un-
likely locations (see the bottom sample in Fig. 13 or the top
sample in Fig. 14).

In the main paper, we also quantitatively assess the per-
formance of the scanpath models on the saliency prediction
task. In particular, given a sample image, we construct the
aggregated saliency map by convolving a Gaussian kernel
over all the locations of predicted fixations [6]. To support
our quantitative analysis, we present the saliency prediction
of our model against the competitors from Fig. 16 to Fig. 20
on COCO-FreeView, MIT1003, OSIE, NUSEF, and FiFa
datasets, respectively. Note that we include DeepGazelll
in the comparison for reference even though its results are
not directly comparable. Indeed, DeepGazelll was specifi-
cally trained on a large scale dataset [5] to predict saliency



maps along with scanpaths. Nevertheless, TPP-Gaze out-
performs DeepGazelll and the other models in many cases,
demonstrating better alignment with humans.

Finally, in Fig. 21 we show additional qualitative re-
sults on sample images from COCO-Searchl8 for the vi-
sual search task. As can be observed, TPP—Gaze can ef-
fectively simulate human-like goal-directed visual attention
patterns for various target objects. The model demonstrates
its ability to adapt, with a simple architectural variation,
from a free-viewing setting to a task-specific visual search
scenario. The results illustrate how TPP-Gaze generates
plausible attention trajectories that focus on regions likely
to contain the target object, mimicking the efficient search
strategies employed by humans when looking for specific
items in complex scenes.
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Figure 11. Qualitative comparison of simulated and human scanpaths on the COCO-FreeView dataset.
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Figure 12. Qualitative comparison of simulated and human scanpaths on the MIT1003 dataset. We omit DeepGazelll for consistency with
the experimental settings described in the main paper.
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Figure 13. Qualitative comparison of simulated and human scanpaths on the OSIE dataset.
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Figure 14. Qualitative comparison of simulated and human scanpaths on the NUSEF dataset.
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Figure 15. Qualitative comparison of simulated and human scanpaths on the FiFa dataset.
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Figure 16. Saliency maps of sample images from COCO-FreeView dataset computed from the fixations generated by the considered

scanpath models. For completeness, we include DeepGazelll, but note that its training procedure also involves saliency prediction.
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Figure 17. Saliency maps of sample images from MIT1003 dataset computed from the fixations generated by the considered scanpath
models. We omit DeepGazelll for consistency with the experimental settings described in the main paper.
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Figure 18. Saliency maps of sample images from OSIE dataset computed from the fixations generated by the considered scanpath models.
For completeness, we include DeepGazelll, but note that its training procedure also involves saliency prediction.
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Figure 19. Saliency maps of sample images from NUSEF dataset computed from the fixations generated by the considered scanpath

models. For completeness, we include DeepGazelll, but note that its training procedure also involves saliency prediction.
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Figure 20. Saliency maps of sample images from FiFa dataset computed from the fixations generated by the considered scanpath models.
For completeness, we include DeepGazelll, but note that its training procedure also involves saliency prediction.
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Figure 21. Qualitative comparison of simulated and human scanpaths on the COCO-Search18 dataset for the visual search task.
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