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1. Introduction

This supplementary material contains important infor-
mation that could not be included in the main paper due
to space constraints and aims to support the discussions in
the main paper. The structure of the main paper is followed.

2. DrIFT Dataset

2.1. Dataset Characteristics and Statistics

Fig. 1 in the main paper displays a variety of back-
grounds from our dataset, including the sky, trees, and
ground during three distinct seasons (fall, winter, and sum-
mer) or adverse weather conditions (foggy, snowy, and
rainy). Fig. 1 demonstrates that the DrIFT possesses 47, 991
image frames. As discussed in Subsec. 3.1 ”The DrIFT
Story” in the main paper, we attempted to keep the balance
between training and validation sets for almost all domains:
3, 000 frames for training and 300 frames for validation.
This standard practice facilitates a proper platform for eval-
uating the UDA algorithms. Fig. 2 shows the number of
existing background samples in each domain. It is impor-
tant to note that, as shown in the last three rows of Fig. 2,
the dataset includes only a validation set for the aerial-real
domains, without a corresponding training set. Addition-
ally, it is noteworthy that our adverse weather domains only
contain a sky background. Hence we have avoided report-
ing metrics for tree and ground backgrounds within these
domains in Tab. 1.

Fig. 3 depicts drones’ relative size and location distribu-
tion in real and synthetic domains. The center point, width,
and height are normalized to the image width and height.
For the aerial-real data in Fig. 3c, the means of the rela-
tive width and height are approximately 0.015, whereas in
Fig. 3d, representing aerial-synthetic data, these values are
around 0.02 and 0.015, respectively. The width and height
of the ground-real, illustrated in Fig. 3g, are about 0.03, al-
though for the ground-synthetic shown in Fig. 3h, these are
approximately 0.02. These numbers indicate that we deal
with extremely small objects in comparison to other appli-
cations, e.g., autonomous land vehicles [2, 11]. It makes

DrIFT more challenging in terms of training the detector
models.

3. DrIFT Benchmark

3.1. Methodology

3.1.1 Uncertainty Estimation

In [8, 9], the researchers employed a gradient function and
introduced the concept of self-learning gradient as a metric
to evaluate the uncertainty of each detection. If we consider
the supervised learning scenario the gradient of the loss
function for each detection is g(Xi,y
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j
i). (1)

The self-gradient metric, gcand(.), referred to as Grad-
loss, operates as a characteristic that signifies the degree
of epistemic uncertainty, which is the focal point for in-
vestigating DS. Grad-loss-localization is called the cor-
responding localization term of the loss, although Grad-
loss-classification points to the classification term in the
loss. Nevertheless, it does not inherently encompass the
true essence of uncertainty. To consider other methods, we
employ a technique based on MC-dropout to capture the in-
herent uncertainty associated with each detection. In this
approach, we activate dropout at inference time and run our
model for Nmcdo times. Let us consider the output of the
model at each iteration Ŷm

i where m ∈ {1, . . . ,Nmcdo}.
Initially, we create an |Ŷ1

i |-length list corresponding to all
output detections in the first iteration. Subsequently, we per-
form some NMS like the one in Eq. 1 of the main paper to
have a candidate list and assign the best candidate with the
highest IoU to each list. A detection in each iteration is
only allowed to be a member of one list, and a new list is
created if there is no option with a higher IoU threshold.
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Figure 1. Hierarchical sunburst chart of the DrIFT dataset: The DrIFT dataset contains aerial and ground views in real-world and simulated
environments. There are numerous domains based on the various seasons and weather. The chart displays the number and percentage of
the samples within the parent category. Adv: adverse

Ultimately, we calculate the standard deviation of localiza-
tion parameters σq

b and the entropy of the mean of the clas-
sification probability vector Hq

cls, q ∈ {1, . . . , Nmcdo out},
respectively. If we assume we have Nmcdo out lists of out-
puts, we can compute the uncertainty for each list as fol-

lows:

σq
b =

√√√√ 1

cq

cq∑
n=1

(bn − b̄)2, Hq
cls = −

cq∑
n=1

s̄n ∗ log s̄n. (2)

Here, cq is the number of members in each list, q is the
index of each list, and .̄ denotes the mean of the underly-



Figure 2. Number of existing background samples in each domain: We aim to maintain an equal number of background samples for each
domain’s training and validation sets, unless the distribution of real data prevents us from adhering to this guideline.

ing variable. This technique is referred to as MCDO-NMS
which is divided into MCDO-NMS-localization, referred
to as σq

b , and MCDO-NMS-classification, referred to as
Hq

cls in Eq. (2). Inspired by [6], which suggests averaging
individual uncertainties as one possible aggregation solu-
tion, we take a weighted average of classification entropy.
Similarly, we sum the square residuals of localization pa-
rameters, take a weighted average, and calculate the square
root at the end.

3.2. Benchmark Scenarios

3.2.1 Normalization

Normalization has been done for each metric by subtract-
ing a reference value, which is the value of the metric for

the source domain, and then dividing by the same reference
value. The normalization is mathematically expressed by

M i
norm =

M i −Mr

Mr
. (3)

For a set of values of a metric M = {M1,M2, . . . ,Mn}
and corresponding reference value Mr, the normalized set
is Mnorm = {M1

norm,M
2
norm, . . . ,M

n
norm}. The subtraction

of the reference value Mr ensures that the data is centered
around zero, and the subsequent division by Mr scales the
data, making it comparable or suitable for further analy-
sis. Fig. 4 is illustrated using normalized values of different
metrics. All metrics are normalized to their values for the
source domain. Positive values indicate increases.
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Figure 3. Center point (x, y), height, and width distributions through training sets for both aerial and ground view with a separation for
both real and synthetic parts of our dataset. The height and width distributions show the relatively small size of the objects available in
DrIFT.

Figure 4. Violin plot of uncertainty metrics: The metrics are nor-
malized to the source domain’s uncertainty. MCDO-map always
shows positive values, increasing along with DSs, while most of
the metrics show negative values.

3.2.2 Violin box plot

Violin box plot [3] is a graphical representation that com-
bines aspects of both box plots and kernel density plots. It
provides a concise and informative way to visualize the dis-
tribution, central tendency, and spread of a variable. In the
violin box plot:

• The central box represents the interquartile range
(IQR) of the data, with the line inside indicating the
median.

• The ”violin” shape surrounding the box displays the
probability density function of the data, providing in-
sights into the distribution’s shape.

• Wider sections of the violin indicate higher data den-
sity, while narrower sections represent lower density.

• Outliers, if any, are often displayed as individual
points.

3.2.3 Pearson correlation coefficient

Pearson correlation coefficient [1], denoted by ρ, is a mea-
sure of the linear relationship between two variables M1

and M2. It is defined as the ratio of the covariance of M1

and M2 to the product of their standard deviations,



ρM1M2 =
cov(M1,M2)

σM1σM2

. (4)

The Pearson correlation coefficient ranges from -1 to 1.
A value of 1 indicates a perfect positive linear relationship,
0 indicates no linear relationship, and -1 indicates a perfect
negative linear relationship. Positive values indicate that as
one variable increases, the other variable tends to increase
as well. Negative values indicate that as one variable in-
creases, the other variable tends to decrease. This coeffi-
cient has been used in Fig. 3 of the main paper to analyze
the relationships between different metrics.

3.2.4 Kullback-Leibler (KL) divergence

KL divergence [4] is a measure of how one probability dis-
tribution diverges from a second, expected probability dis-
tribution. In the DrIFT benchmark, it serves as a metric to
quantify the distance between feature map distributions of
different domains with the source domain, which is ground-
synthetic-winter-normal-sky. The KL divergence is defined

DKL(FMDtarget∥FMDsource) =

N∑
i

FMDi
target log

(
FMDi

target

FMDi
source

)
,
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in which N is the cardinality of the feature map distribu-
tions, |FMDtarget|. We assume the two distributions have
the same size, |FMDtarget| = |FMDsource|. FMDtarget
is the feature map distribution of each domain that is taken
as the target domain, and FMDsource is the source do-
main’s feature map distribution. i is the index of existing
elements in each domain’s feature map distribution.

3.3. Experiments and Results

The ground-synthetic-winter-normal-sky is taken as the
source domain all over the paper and supplementary mate-
rial unless we specify other domains.

3.3.1 Implementation Details

For the object detector in this work, the Faster R-CNN [7]
architecture with a VGG16 [10] in the mmdetection plat-
form [5] has been utilized. For generalization and MC-
dropout uncertainty evaluation implementation, the dropout
has been activated within the VGG. The experiments were
run on a Desktop with a Geforce RTX 3090 and a High-
performance computing cluster providing 4 x NVidia A100
(40 GB memory). For the vanilla network training that was
started from scratch, we used a stochastic gradient descent
optimizer for 73 epochs, for which the learning rate was
0.24 for a batch size of 6 on each GPU. For adaptation train-
ing, the vanilla network is used as the pre-trained weights.

The learning rate has been decreased to 10−5, and the dis-
criminator, which is a simple convolutional neural network,
has been trained by an Adam optimizer with a learning rate
of 10−6. The codes and details will be available on an on-
line platform.

The objective of Tab. 1 and Tab. 2 is to compare our
uncertainty estimation method, MCDO-map, with various
uncertainty estimation metrics mentioned in the main paper.
In Tab. 1, the source domain was ground-synthetic-winter-
normal-sky, while ground-real-winter-normal-sky served as
the source domain in Tab. 2. To provide a comprehensive
explanation, we utilized Fig. 6 to discover a meaningful
relation between different uncertainty evaluation metrics,
AP, D-ECE, and KL divergence metric (which measures the
distance between feature map distributions of different do-
mains relative to the source domain) using the Pearson cor-
relation coefficient. The findings in Fig. 6 could be summa-
rized as follows:

• MCDO-map exhibits the highest positive correlation
(0.81) with KL divergence, indicating its superior ca-
pability to capture DSs. A greater level of shift, re-
flected by increased distance or KL divergence, corre-
lates with higher values of MCDO-map.

• As an uncertainty evaluation metric, a negative corre-
lation with AP is expected, implying that higher AP
values correspond to lower uncertainty levels. In this
context, MCDO-NMS-Loc-Total, MCDO-NMS-Loc-
FP, and MCDO-map yield the best results.

• Positive correlations between D-ECE and most uncer-
tainty evaluation metrics suggest that increased uncer-
tainty tends to coincide with calibration errors.

• A positive correlation between D-ECE and AP indi-
cates that even with higher AP values, the model may
exhibit over or under-confidence, compromising its re-
liability.

• Positive correlations between D-ECE and most uncer-
tainty evaluation metrics, such as 0.36 for MCDO-
map, suggest that higher levels of uncertainty are as-
sociated with calibration errors.

Consequently, MCDO-map emerges as a wise choice for
our UDA algorithm to capture DSs effectively.

To enhance the understanding of our results, we present
three examples of the outputs generated by the trained
Faster R-CNN model on the ground-synthetic-winter-
normal-sky domain, depicted in Fig. 7. In Fig. 7a, the drone
with a sky background exhibits low uncertainty, as indicated
by the blue bounding box on the entropy map. We observe
non-zero std values only at the edge of the bounding box
in the std map (inside blue, red at the edge). However,



Validation Domain MCDO-NMS×10−3 MCDO-Map grad-loss×10−3

Localization Classification ×10−4 Loc. Cls.

View Source Season Weather BG Total TP FP Total TP FP

ground synthetic winter normal - 107 83 107 457 354 459 3582 433 610
ground synthetic winter normal sky 107 63 107 436 141 439 - 445 564
ground synthetic winter normal tree 108 93 108 512 523 512 - 451 680
ground synthetic winter normal ground 106 104 107 440 476 422 - 397 670

ground real winter normal - 183 56 186 492 313 496 5355 477 708
ground real winter normal sky 173 56 180 495 298 508 - 434 692
ground real winter normal tree 162 100 163 442 689 432 - 451 680
ground real winter normal ground 189 59 189 490 578 490 - 502 717

ground synthetic adverse rainy sky 98 67 99 401 112 404 3866 390 634
ground synthetic adverse snowy sky 79 58 79 454 183 456 4686 458 658
ground synthetic adverse foggy sky 85 83 85 449 241 484 4454 335 642

aerial synthetic winter normal - 100 78 101 436 335 438 4287 373 601
aerial synthetic winter normal sky 101 62 103 407 166 417 - 444 500
aerial synthetic winter normal tree 104 74 104 499 463 499 - 415 659
aerial synthetic winter normal ground 98 90 99 426 427 426 - 341 628

aerial synthetic fall normal - 95 99 95 509 351 515 4680 424 650
aerial synthetic fall normal sky 92 105 92 523 312 529 - 435 653
aerial synthetic fall normal tree 100 59 101 492 386 495 - 391 658
aerial synthetic fall normal ground 102 107 102 456 453 456 - 427 611

aerial synthetic summer normal - 95 92 95 525 299 532 4677 424 657
aerial synthetic summer normal sky 94 92 94 538 269 543 - 434 658
aerial synthetic summer normal tree 108 104 112 478 222 505 - 364 642
aerial synthetic summer normal ground 93 116 91 465 464 465 - 410 663

aerial synthetic adverse rainy sky 100 092 101 440 238 446 4084 468 554
aerial synthetic adverse snowy sky 85 67 85 598 298 605 4835 445 690
aerial synthetic adverse foggy sky 105 116 103 468 390 477 4394 445 635

Table 1. Comparison of our uncertainty estimation metric, MCDO-map, with other methods for the Faster R-CNN trained on the source
domain. Each row shows the validation domain. In each row, three different methods have evaluated the uncertainty level. MCDO-NMS
reported separately for TP and FP detections. MCDO-map works better than other methods in terms of capturing DSs effectively. Loc.:
localization, Cls.: Classification

Validation Domain MCDO-NMS×10−3 MCDO-Map grad-loss×10−3

Localization Classification ×10−4 Loc. Cls.

View Source Season Weather BG Total TP FP Total TP FP

ground real winter normal - 84 31 88 405 146 425 5355 299 621
ground real winter normal sky 173 56 180 495 298 508 - 434 692
ground real winter normal tree 86 34 86 464 489 464 - 358 675
ground real winter normal ground 71 79 71 377 388 377 - 454 564

Table 2. Comparison of our uncertainty estimation metric, MCDO-map, with other methods for the Faster R-CNN trained on ground-real-
winter-normal-sky domain. Each row shows the validation domain. In each row, three different methods have evaluated the uncertainty
level. MCDO-NMS reported separately for TP and FP detections. MCDO-map works better rather than other methods in terms of capturing
DSs effectively. Loc.: localization, Cls.: Classification

a few false detections occur during the MCDO iterations,
resulting in non-zero values in both maps around the in-

tersection of the tree and ground. Moving to Fig. 7b, the
drone with a tree background demonstrates higher uncer-
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Figure 5. 2D representation of Faster R-CNN’s, trained on the source domain, last layer feature maps distribution for different domains by
utilizing t-SNE. a) For the target domains, synthetic data is changed to real data with sky, tree, and ground backgrounds. b) The view and
season have been changed to aerial view, and fall and summer, respectively, as well as different backgrounds. c) All defined domains are
taken into account without separating the different backgrounds.

tainty. The bounding box exhibits some red areas in the
entropy map, accompanied by non-zero standard deviation
values inside the bounding box. Once again, false detec-
tions contribute to non-zero values in the maps. Finally,

in Fig. 7c, the drone with a ground background is detected
with the highest level of uncertainty among these cases, cor-
responding to way too red color for the bounding box in the
entropy map and nonzero values within the bounding box



Figure 6. Correlation heatmap of metrics in DrIFT: MCDO-map exhibits the highest positive correlation (0.81) with KL divergence,
indicating its superior capability to capture DSs. MCDO-NMS-Loc-Total, MCDO-NMS-Loc-FP, and MCDO-map yield the top three
negative correlations with AP. MCDO-map emerges as the best metric in terms of capturing DSs effectively.

in the std map. However, a significant number of false de-
tections around trees contribute to a considerable level of
uncertainty in the maps, reflecting the low AP for trees and,
consequently, higher uncertainty in this domain. Detailed
AP and uncertainty values for trees are provided in Tab. 2
of the main paper.



(a) Target drone with sky background

(b) Target drone with tree background

(c) Target drone with ground background

Figure 7. Visual results of the trained faster R-CNN on the Ground-Synthetic-Winter-Normal-Sky domain: In (a), the drone with a sky
background exhibits a low level of uncertainty, as indicated by the bounding box being entirely blue in the entropy map, with non-zero std
values only at the edge. In (b), the drone with a tree background demonstrates a higher level of uncertainty, with red areas in the entropy
map and non-zero standard deviation values within the bounding box. In (c), the drone with a ground background is detected with the
highest level of uncertainty in this figure, with an intense red coloration within the box in the entropy map and high std.
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