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A.1. Pseudocode
Our proposed method is detailed in Algorithm 1. We

train our model for NT epochs initially. During this warm-
up period, we also record the values of the loss LF for
each sample i and epoch e. After this period, we calculate
Count for each sample i and determine their inclusion as a
pseudo-trajectory if Countpiq ă DˆNc. Here, Nc denotes
the number of epochs where the loss for each sample has
been recorded. At the end of warm-up period Nc “ NT ,
while after the warm-up period Nc “NInt, where NInt is
the epoch interval between pseudo-trajectory generations.
To generate the final augmented samples we concatenate
the reconstructed past timestep S̃p and the social forecaster
output trajectory SF pS̃pq. Prior to each augmentation, we
erase the previously added trajectories from the training data.

A.2. Training and Architectural Details
Masking. To mask each scene, we calculate the number of
total timesteps Tscene “ N ˆ tp. The number of masked
timesteps can be calculated as RˆTscene for masking ratio
R. We observed that masking a timestep solely by setting it
to location zero was confusing to the model, as it would get
interpreted as a non-masked zero location. For this reason,
we concatenated a binary indicator with the masked input
location Smasked

p ptq for each timestep t, where 0 indicates
no masking, and 1 indicates masking.
Hyperparameters The hyperparameters that we used to
train our models with are depicted in Table A.1. We ob-
served that the Univ dataset was sensitive to overfitting, due
to a higher number of test samples compared to the train sam-
ples, as well as the difference between the fewer number of
crowded scenes in the train partition compared to the larger
number in the test partition. To effectively address this, the
size (number of parameters) of the model was reduced for
this dataset, by reducing the values of the hyperparameters
dm and dff , as shown in the first two rows of Table A.1.
For the learning rate schedule, We used the Steplr scheduler,
which has the two hyperparameters of gamma and stepsize

Table A.1. Hyperparameters of our method for ETH/UCY and
SDD.

Hyper- Dataset Description
Params ETH Hotel Univ Zara1 Zara2 SDD

dm 128 64 64 256 128 128 Model dimension
dff 512 256 128 512 512 256 Feedforw. layer dim.
dz 32 32 32 32 32 32 Latent space dim.

nf
enc 1 2 2 1 2 1 Encoder layers

nf
dec 1 1 1 1 1 1 Decoder layers

nr
dec 1 1 1 1 1 1 Recon. decoder layers

natthead 8 8 8 8 8 8 Attention heads
D 0.5 0.5 0.5 0.5 0.5 0.5 Difficulty threshold
ϵ 0.1 0.1 0.05 0.1 0.1 0.1 Epsilon for social loss

NT 10 20 20 20 20 10 Threshold epoch
NInt 10 10 10 10 10 10 interval epochs
R 30 10 10 30 20 10 Masking ratio

gamma 0.8 0.8 0.8 0.5 0.8 0.8 Steplr scheduler Gamma
lr 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 Learning rate

stepsize 10 20 20 10 40 10 Step size for scheduler
w1 1 1 1 1 1 1 Forecaster loss weight
w2 1 1 1 1 1 1 Recon. loss weight
w3 1 1 1 1 1 1 Social loss weight

as depicted in Table A.1. We provide the code for our paper
at https://github.com/thisishale/SocRec.

A.3. Additional Visualizations and Results
In this section, we provide visualizations of forecasted

trajectories for four examples shown in Figure A.1 to il-
lustrate the effect of social loss on the number of location
overlaps. According to the standard protocol, trajectories
are included within each scene only for those pedestrians
whose trajectories (combining both ground truth past and
future locations) comprise a length of 20 timesteps. For
example, in Example 1, there are two such pedestrians, in
Example 2, there are four, etc. The minimum distance be-

1

https://github.com/thisishale/SocRec


Algorithm 1 Training of our proposed method
NTot: Total number of epochs, NT : Threshold epoch,
Nc: Loss observation duration, NInt: Interval epoch,
Nm: Number of Training samples, Na: Number of Augmented
samples,
SF : Forecaster module, SR: Reconstructor module,
Sp: Past trajectory, Smasked

p : Masked past trajectory,
Sf : Future ground truth trajectory,
LF : Forecaster CVAE loss function,
LR: Reconstructor VAE loss function,
LTotal: Total loss, LSoc: Social loss function,
larr P RNmˆNc :Array to save losses,
D: Difficulty Threshold,
Aarr P RNa : Array to save Augmented samples,
while e ă NTot do

while i ă Nm do
S̃f Ð SF pSpq;
S̃p Ð SRpSmasked

p q;
Calculate LF , LR, LSoc, LTotal Compute gradients and
backpropagate LTotal

larrri, es Ð LF

if e “ NThr then

Countpiq Ð
Nthr
ř

e“1

Ipdi,e ą ai,eq

if Countpiq ă D ˆ Nc then

Aarr Ð S̃p ‘ SF pS̃pq

end
Nthr Ð Nthr ` NInt

end
i Ð i ` 1

end
if e “ NThr then

Erase previously added augmented smaples from training
set
Add Aarr samples to the training set
Clear Aarr

Clear larr

end
e Ð e ` 1

end

tween pairs of pedestrian trajectories in the scene is depicted
above each example. Overlaps between pedestrians, where
their separation within a timestep is smaller than ϵ ď 0.1,
are highlighted with red circles. As shown in the figure, our
proposed method provides improved socially-aware predic-
tions, where the forecasted trajectories have a lower chance
of overlapping with each other. We also investigate the effect
of social loss on ADEmean

20 and FDEmean
20 , which is shown

in Table A.2. Our method results in better performance re-
garding the mean error of the produced trajectories in four
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Figure A.1. Visualization of trajectories in a scene from Hotel
subset. Red circles show location overlaps. Min. Distance denotes
the minimum euclidean distance between pedestrians in meters.
Past and future timesteps are denoted by red and blue, respectively.

Table A.2. Ablation studies for ADEmean
20 Ó {FDEmean

20 Ó.

Social Social Dataset
Attention Loss ETH Hotel Univ Zara1 Zara2

✓ ✓ 1.27/2.61 0.57/1.33 0.86/1.89 0.70/1.52 0.59/1.34
✓ ✗ 1.37/2.81 0.64/1.40 0.89/1.90 0.75/1.63 0.68/1.51
✗ ✗ 1.38/2.78 0.57/1.21 0.82/1.80 0.79/1.73 0.68/1.52

out of five subsets.
Two examples demonstrating the best, worst, and dis-

tribution of predicted trajectories by our proposed method,
three ablated versions of our method, and Agentformer [1]
are illustrated in Figure A.2. We observe that our method
produces less dispersed distributions, as well as better ‘best
case’ and more viable ‘worst case’ predictions. Additionally,



Figure A.2. Prediction results for our method compared to three ablated models as well as Agentformer on two examples of the ETH scene.
Past and future ground truth trajectories are shown in blue and green dashed lines, while the prediction samples are illustrated with purple
dashed lines. We observe that our proposed method produces a less dispersed distribution compared to all the ablated versions as well
as Agentformer. Our proposed method, compared to the others, also produces the closest ‘worst trajectories’ to the ground truth, while
predicting comparable ‘best trajectories’ to others.

Example 1 Example 2

Example 3 Example 4

Figure A.3. Examples of trajectory prediction with targets in close
proximity of each other. Past and future timesteps are denoted by
red and blue, respectively.

More examples illustrating our method’s predictions in close
proximity cases are shown in Figure A.3.

To analyze the effect of threshold D on the evaluation met-
rics, we perform a sensitivity analysis on this hyperparameter
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Figure A.4. Sensitivity analysis for D.

for different values between 0 and 1, where increasing D
results in the inclusion of augmentations of easier samples
in the training data. The results are depicted in Figure A.4,
where we observe that D “ 0.5 achieves the best overall



results by effectively balancing the inclusion and exclusion
of augmented samples during training.
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