
AnomalyDINO — Supplementary Material

A. Detailed experimental results

Further anomaly maps, predicted by AnomalyDINO, are
presented in Figures 4 to 7. The full results per category
for MVTec-AD and VisA are given in Tables 6 and 7, re-
spectively.

The results presented in Tables 6 and 7 show that a)
anomalies in some categories are more difficult to than oth-
ers, b), that the performance of AnomalyDINO increases
across the board with more available reference samples. In
particular, more complex objects like ‘PCB3’ and ‘PCB4’
in VisA or ‘Transistor’ in MVTec-AD seem to benefit the
most from more available reference samples. In addition,
we see that also the variance in the reported metrics de-
creases with the number of nominal samples.

In this context, we observe a peculiarity of the few-shot
regime (which does not occur for sufficiently populated
M). The results crucially depend on the chosen reference
image(s).6 The high variances, predominantly in the 1- and
2-shot setting, for category ‘Capsule’ for MVTec-AD, or
‘Cashew’ or ‘PCB4’ for VisA demonstrate this. We discuss
the potential failure cases of choosing a sub-optimal refer-
ence sample in the following section (Appendix B.2).

Finally, we also report the full-shot performance, see Ta-
ble 5. As the diversity within M is sufficiently high given
the large number of reference samples, we only apply mas-
ing here (no augmentations). The results demonstrate that
the performance further improves for all considered metrics.
Notably, AnomalyDINO-S (672) achieves new state-of-the-
art segmentation performance measured in (AU)PRO in the
full-shot setting (see here, accessed 11/26/2024).

Table 5. Full-shot results on MVTec-AD and VisA with
AnomalyDINO-S in the default setting (no std reported as results
are deterministic when all samples are considered).

Dataset Resolution Detection Segmentation

AUROC F1-max AP AUROC F1-max PRO

MVTec-AD 448 99.3 98.8 99.7 97.9 61.8 93.9
672 99.5 99.0 99.8 98.2 64.3 95.0

VisA 448 97.2 93.7 97.6 98.7 50.5 95.0
672 97.6 94.5 98.0 98.8 53.8 96.1

B. Limitations and failure cases

The proposed method relies on similarities to patch rep-
resentations captured in M. Therefore, we can only expect
the model to detect those anomalies caused by regions in
the test images that are particularly different from patches

6Note that this holds for all one- and few-shot methods, not only for
AnomalyDINO.
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Figure 4. Examples – MVTec-AD (1/2). Depicted are, from
left to right, a test sample per category (Query), the ground truth
anomaly annotation (GT), and the predicted anomaly map from
AnomalyDINO-S (448) in the 1- and 8-shot settings. The color
coding is normalized by the max. score over ‘good’ test samples.

https://paperswithcode.com/sota/anomaly-detection-on-visa


Table 6. Detailed results on MVTec-AD. Reported are results on anomaly detection (image-level AUROC) and segmentation (PRO) of
AnomalyDINO-S (672) with default preprocessing (mean and standard deviation over three independent runs, all results in %).

Shots 1-shot 2-shot 4-shot 8-shot 16-shot

AUROC PRO AUROC PRO AUROC PRO AUROC PRO AUROC PRO

Bottle 99.7±0.2 95.9±0.3 99.9±0.1 96.3±0.0 99.9±0.1 96.7±0.1 100.0±0.0 96.5±0.4 99.9±0.1 96.4±0.4

Cable 92.7±0.8 89.4±0.4 92.4±1.1 89.5±0.4 93.8±0.9 90.4±0.3 95.2±0.3 90.5±0.2 95.1±0.6 90.5±0.6

Capsule 90.2±5.5 97.1±0.3 89.2±7.9 97.3±0.6 95.8±0.5 97.9±0.1 95.6±0.5 97.9±0.1 95.5±0.6 98.1±0.1

Carpet 100.0±0.0 97.8±0.0 100.0±0.0 97.9±0.0 100.0±0.0 97.8±0.0 100.0±0.0 97.8±0.0 100.0±0.0 97.8±0.0

Grid 99.1±0.2 97.2±0.1 99.2±0.4 97.2±0.1 99.5±0.3 97.2±0.1 99.5±0.1 97.2±0.0 99.7±0.3 97.0±0.2

Hazelnut 97.5±2.6 97.4±0.4 99.6±0.5 98.0±0.3 99.8±0.1 98.0±0.1 100.0±0.0 98.1±0.1 100.0±0.0 98.1±0.1

Leather 100.0±0.0 97.9±0.1 100.0±0.0 97.8±0.0 100.0±0.0 97.6±0.1 100.0±0.0 97.6±0.1 100.0±0.0 97.3±0.2

Metal nut 99.9±0.1 94.2±0.0 100.0±0.0 94.6±0.2 100.0±0.0 95.3±0.1 100.0±0.0 95.4±0.3 100.0±0.0 95.7±0.1

Pill 93.7±0.9 97.3±0.1 95.4±0.7 97.5±0.1 96.0±0.2 97.6±0.1 97.2±0.2 97.7±0.1 97.9±0.1 97.8±0.1

Screw 93.2±0.3 93.4±0.4 93.5±0.8 94.3±0.4 92.7±2.3 94.5±0.9 93.5±1.1 95.2±0.5 94.7±0.9 95.9±0.3

Tile 100.0±0.0 88.0±0.2 100.0±0.0 87.6±0.4 100.0±0.0 87.1±0.4 100.0±0.0 86.7±0.2 100.0±0.0 86.0±0.5

Toothbrush 97.4±0.5 94.0±0.8 98.1±1.0 94.7±0.3 97.5±0.6 94.7±0.3 97.7±1.6 95.1±0.8 98.1±1.8 95.8±1.0

Transistor 90.9±1.2 67.3±2.1 89.4±4.6 68.4±3.1 93.2±2.2 70.6±1.4 96.2±1.3 75.3±1.9 97.6±0.3 78.2±1.4

Wood 98.0±0.2 94.7±0.1 98.0±0.1 94.6±0.0 97.9±0.2 94.6±0.1 98.3±0.4 94.4±0.3 98.3±0.6 94.2±0.4

Zipper 97.4±0.9 89.2±1.2 98.9±0.4 90.2±0.4 99.0±0.4 91.2±0.3 99.6±0.1 91.1±0.4 99.6±0.3 91.7±0.5

Mean 96.6±0.4 92.7±0.1 96.9±0.7 93.1±0.2 97.7±0.2 93.4±0.1 98.2±0.2 93.8±0.1 98.4±0.1 94.0±0.1

Table 7. Detailed results on VisA. Reported are results on anomaly detection (image-level AUROC) and segmentation (PRO) of
AnomalyDINO-S (672) with default preprocessing (mean and standard deviation over three independent runs, all results in %).

Shots 1-shot 2-shot 4-shot 8-shot 16-shot

AUROC PRO AUROC PRO AUROC PRO AUROC PRO AUROC PRO

Candle 87.9±0.3 96.8±0.4 89.4±3.0 97.0±0.2 91.3±2.9 97.2±0.1 93.5±1.2 97.3±0.2 94.5±0.5 97.6±0.2

Capsules 98.4±0.5 95.1±0.7 98.9±0.1 95.5±0.2 99.2±0.1 96.3±0.4 99.2±0.1 96.7±0.2 99.2±0.2 97.2±0.3

Cashew 86.1±3.6 96.1±0.9 89.4±3.8 96.7±0.7 94.5±0.7 97.4±0.5 95.3±0.6 97.3±0.2 96.0±0.3 97.3±0.1

Chewinggum 98.0±0.4 92.0±1.0 98.6±0.4 92.9±0.3 98.8±0.2 93.0±0.1 98.8±0.2 93.1±0.3 98.8±0.2 93.0±0.3

Fryum 94.8±0.5 93.2±0.2 96.5±0.2 93.9±0.3 97.0±0.1 94.5±0.4 97.6±0.4 94.9±0.3 97.9±0.2 95.1±0.0

Macaroni1 87.5±1.1 97.5±0.3 87.5±0.9 97.9±0.3 89.5±1.4 98.3±0.2 90.1±1.7 98.6±0.2 90.4±1.1 98.7±0.1

Macaroni2 62.2±4.3 92.0±0.7 66.9±1.9 93.0±0.4 70.0±1.7 93.9±0.8 74.9±0.4 95.0±0.6 77.6±0.8 95.7±0.3

PCB1 91.5±2.0 92.6±0.2 91.2±2.7 92.5±0.5 94.0±2.1 93.3±0.5 95.5±0.5 93.9±0.2 96.8±0.7 94.2±0.2

PCB2 84.8±1.2 89.9±0.2 88.1±2.5 90.7±0.3 91.1±1.7 91.4±0.2 92.6±0.3 92.0±0.1 93.2±0.1 92.5±0.2

PCB3 84.9±3.3 88.5±1.3 89.4±3.8 90.8±0.5 94.3±0.4 91.7±0.4 95.6±0.2 93.1±0.3 96.5±0.3 93.9±0.3

PCB4 79.9±13.7 78.5±6.8 87.4±11.3 82.0±6.1 96.2±2.6 84.1±1.5 98.0±0.3 87.9±2.3 99.0±0.4 90.4±1.8

Pipe fryum 92.7±2.7 98.0±0.0 93.3±1.2 97.9±0.2 94.6±1.9 97.8±0.1 95.0±1.6 97.6±0.1 97.2±0.9 97.7±0.1

Mean 87.4±1.2 92.5±0.5 89.7±1.3 93.4±0.6 92.6±0.9 94.1±0.1 93.8±0.3 94.8±0.2 94.8±0.2 95.3±0.2

of the given reference sample(s). Our experiments reveal
that this may lead to some specific failure cases.

B.1. Semantic Anomalies

The first relates to the distinction between low-level sen-
sory anomalies and high-level semantic anomalies. Seman-

tic anomalies might be present because a logical rule or a
specific semantic constraint is violated. In contrast, Anoma-
lyDINO is developed with low-level sensory anomalies in
mind. Consider, for instance, the anomalies shown in Fig-
ure 8.

While the cable with anomaly type ‘Bent Wire’ (Fig-
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Figure 5. Examples – MVTec-AD (2/2). See Fig. 4 for a descrip-
tion.

ure 8b) contains patches that cannot be well matched to
patches of the reference image, this does not apply to the
anomaly ‘Cable Swap’ (Figure 8c). The latter shows a se-
mantic anomaly with two blue wires, while a nominal image
of a ‘Cable’ should depict all three different cable types. As
a result, all test patches of Figure 8b can be matched well
with reference patches in M, and thus, AnomalyDINO does
not detect this anomaly type. Evaluating the detection per-
formance for this specific failure case, ‘Cable Swap’, our
proposed method essentially performs on chance level, giv-
ing a detection AUROC of 50.2% (± 4.9%).

Query GT 1-shot 8-shot

Figure 6. Examples – VisA (1/2). Depicted are, from left
to right, a test sample per category (Query), the ground truth
anomaly annotation (GT), and the predicted anomaly map from
AnomalyDINO-S (448) in the 1- and 8-shot settings. The color
bar is normalized by the maximum score on the ‘good’ test sam-
ples (per category). For the category ‘Capsules’ (left column, sec-
ond from top) we changed the color map for better visibility. Best
viewed at a higher zoom level as some anomalies are quite small.

B.2. The importance of informative reference sam-
ples

The second failure case occurs if the reference sample(s)
does not resemble all concepts of normality, therefore M
does not capture all variations of the nominal distribution
pnorm. As an illustration, consider the nominal samples
of ‘Capsule’ in MVTec-AD, which may be rotated in such
a way that the imprinted text is hidden (see Figure 9b).
Therefore, parts of the text of a nominal test sample may
be falsely recognized as anomalies. Due to the strong de-
pendency on a suitable reference sample, we observe higher
AD variances for some products in the one-shot setting, as
shown in Tables 6 and 7. We like to remark, that this is
only relevant to the few-shot setting, and with an increas-
ing number of reference samples (and higher diversity of
nominal patches in M), the variance decreases notably.
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Figure 7. Examples – VisA (2/2). See Fig. 6 for the description.

(a) Reference sample
(No anomalies)

(b) Anomaly type
‘Bent Wire’

(c) Anomaly type
‘Cable Swap’

Figure 8. Example of a semantic anomaly in category ‘Cable’
(MVTec-AD). Depicted are a nominal reference sample, a sensory
anomaly (Figure 8b), and a semantic anomaly (Figure 8c) with
anomaly maps predicted by AnomalyDINO (1-shot).

C. Ablation Study

C.1. Preprocessing

As discussed in Section 3, we consider two potential pre-
processing steps in our pipeline: masking and rotations. We
mask out irrelevant background patches, whenever the zero-
shot segmentation of DINOv2 captures the object correctly
(see Figure 2). Discarding background patches helps to mit-
igate the problem of potential background noise, thereby
reducing the number of false positives. A representative ex-

(a) Reference sample (left) and estimated anomaly map of ‘good’ test
sample (right).

(b) Reference sample (left) and estimated anomaly map of ‘good’ test
sample (right).

Figure 9. Example of an uninformative reference sample in
category ‘Capsule’ (MVTec-AD). Some reference samples do not
resemble the full concept of normality (here, the sample in Fig-
ure 9b does not show the text on the capsule, i.e., any nominal
sample with text be considered anomalous). Anomaly maps pre-
dicted by AnomalyDINO based on the depicted reference sample.

ample, here from the category ‘Capsules’ from the VisA
dataset, is depicted in Figure 10. Without masking, the
method would correctly predict the depicted sample to show
an anomaly, but for the wrong reason (high anomaly scores
caused by background noise/contamination). In contrast,
the irrelevant background areas are discarded by our mask-
ing approach, such that the anomalous region is correctly
identified. We conclude that masking is essential to faith-
fully detect anomalies whenever higher variations in the
background are expected—and as the issue of low varia-
tions is particularly pressing in the few-shot regime, caused
by the minimal amount of nominal reference samples, suit-
able masking can significantly boost the performance in
these cases. This is showcased by the superior anomaly lo-
calization performance A quantitative analysis is provided
in the next paragraphs.

In addition to masking (which decreases the size of M),
we consider augmenting the reference sample with rotations
(which increases the size and diversity of M). Here we
distinguish the ‘agnostic’ scenario, where we do not know
a priori about potential rotations, and augment by default.
Whenever we know about potential rotations of reference or
test samples, we can deactivate the augmentation to reduce
the size of the memory bank M, the time to construct M,
as well as the test time itself.

The preprocessing decision per category for MVTec-AD



(a) Test sample (left), the same test sample with ground-truth anomaly annotation (center), and a magnified view of a region with strong
background artifacts (right).

(b) Anomaly map predicted by AnomalyDINO (1-shot) without masking (left) and with masking (right).

Figure 10. Visualization of the effect of masking in the presence of high background noise for the category ‘Capsules’ in VisA (1-shot).
As in Figure 6 we depict the anomaly map for ‘Capsules’ using a different colormap (red instead of yellow) for better visibility. Best
viewed on a higher zoom level.

and VisA, inferred (solely) from the first nominal reference
sample in Xref (to comply with the one-shot setting), are
given in Table 8.

Table 8. Default preprocessing steps for MVTec-AD and VisA.
We do not mask textures, as indicated by (T). In addition, we do
not apply masking when the masking test on the first train sample
failed, as indicated by (MT). See Section 3 and Figure 2 for further
discussion and visualization.

MVTec-AD Mask? Rotation?

Object informed agnostic

Bottle ✗(MT) ✗ ✓

Cable ✗(MT) ✗ ✓

Capsule ✓ ✗ ✓

Carpet ✗(T) ✗ ✓

Grid ✗(T) ✗ ✓

Hazelnut ✓ ✓ ✓

Leather ✗(T) ✗ ✓

Metal nut ✗(MT) ✗ ✓

Pill ✓ ✗ ✓

Screw ✓ ✓ ✓

Tile ✗(T) ✗ ✓

Toothbrush ✓ ✗ ✓

Transistor ✗(MT) ✗ ✓

Wood ✗(T) ✗ ✓

Zipper ✗(MT) ✗ ✓

VisA Mask? Rotation?

Object informed agnostic

Candle ✓ ✗ ✓

Capsules ✓ ✗ ✓

Cashew ✓ ✗ ✓

Chewinggum ✓ ✗ ✓

Fryum ✓ ✗ ✓

Macaroni1 ✓ ✗ ✓

Macaroni2 ✓ ✗ ✓

PCB1 ✓ ✗ ✓

PCB2 ✓ ✗ ✓

PCB3 ✓ ✗ ✓

PCB4 ✓ ✗ ✓

Pipe fryum ✓ ✗ ✓

Effect of preprocessing on detection performance As
discussed in Section 3 (and in the previous paragraph), suit-
able means to fill M and preprocess test samples, influ-
ence the detection performance. The results per object for
MVTec-AD and VisA are given in Figures 11 and 12, re-
spectively.

Rotation Increasing the diversity of nominal patch repre-
sentations in M by rotating the reference sample can signif-
icantly improve the detection performance. Consider, e.g.,
the category ‘Screw’ in MVTec-AD, where the detection
AUROC can be boosted from 65.6% to 89.2% in the 1-shot
setting. This is intuitive, as the test samples of ‘Screw’ are
taken from various angles. With sufficiently many reference
samples, such data augmentation is not necessary anymore,
but for the few-shot setting, we see major improvements.

The same holds—although to a lesser extent—for the
categories ‘Hazelnut’, ’Cable’, and ‘Wood’ (all MVTec-
AD). However, we also observe that rotations of the refer-
ence sample can also decrease the detection performance in
some categories, namely ‘PCB1/2/3’ and ‘Macaroni1’ (all
VisA), and to a small extent also ‘Transistor’ (MVTec-AD).

We attribute this to the fact the specific anomalies for
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Figure 11. Effect of preprocessing on MVTec-AD. Anomaly detection of AnomalyDINO-S (448) in the 1-shot setting for different
choices of the preprocessing pipeline (detection AUROC on image-level in %, mean and standard deviation over three independent runs).
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Figure 12. Effect of preprocessing on VisA. Anomaly detection with AnomalyDINO-S (448) in the 1-shot setting for different choices of
the preprocessing pipeline (detection AUROC on image-level in %, mean and standard deviation over three independent runs). For VisA,
the ‘informed’ scenario is equivalent to only applying masking (all categories), while ‘agnostic’ is equivalent to masking and augmentations
(all categories), see Table 8.

these printed circuit boards contain rotated or bent connec-
tors (see the PCB examples in Figure 6, right column). And
rotations of nominal samples may falsely reduce the dis-
tance between those patches depicting bent connectors and
the nominal memory bank M.

Such a failure case based on a suboptimal preprocessing
decision is depicted in Figure 13. The anomaly refers to

a rotated transistor (anomaly type ‘misplaced’), and when
(falsely) rotating the reference sample, such anomalies will
not be detected—in contrast to the ‘informed’ preprocess-
ing (right side of Figure 13). This highlights the importance
of carefully designing the pre- and postprocessing pipeline
for each object/product considered.



Figure 13. Rotations as anomalies (‘misplaced’ transistor from
MVTec-AD). The left anomaly map is estimated from a reference
sample with rotations (‘agnostic’), and the anomaly is not detected.
In contrast, the right anomaly map is based on a reference sample
without rotations (‘informed’), and the anomaly is successfully de-
tected. This example highlights the importance of a carefully de-
signed preprocessing pipeline for each object.

Figure 14. Masking examples from MVTec-AD for all cate-
gories that passed the masking test (on a single train sample, see
Table 8).

Masking We utilize the zero-shot masking capabilities of
DINOv2 to keep the overhead for this preprocessing step
minimal. By applying a threshold to the first principal com-
ponent [30], we can typically distinguish between the back-
ground and the foreground.

We also employ a straightforward rule-based strategy
to enhance the robustness and generalizability of the PAC-
based masking in industrial settings: ensuring that the cen-
ter crop of the image is predominantly occupied by the ob-
ject of interest. This minor adjustment is necessary because

Figure 15. Masking examples from VisA.

industrial images often differ significantly from the data on
which DINOv2 was originally trained. In addition, we use
dilation and morphological closing to improve the quality of
the mask. In our experiments, we applied masking only to
the test samples as the size of M did not matter in the few-
shot regime. Across the board, we see that the proposed
masking technique improves the detection performance—
in many categories even significantly, e.g., for ‘Capsules’,
‘Macaroni1/2’, or ‘PCB1/2/3/4’ (all VisA). We leave fur-
ther improvements and the exploration of more advanced
masking techniques for future work.

Runtime analysis The design choices in our pipeline in-
fluence the run time of the proposed method. To see the po-
tential effects we measure the inference time per sample on
MVTec-AD in various scenarios together with the time to
set up the memory bank M. The runtime was assessed uti-
lizing a single NVIDIA A40 GPU, consistently employed
throughout all experiments detailed in this paper (each ex-



Table 9. Runtime analysis on MVTec-AD (mean and std of inference time over all 1725 test samples, and mean and std of time to
populate the memory bank for each object) for different shots (Tab. 9a), preprocessing choices (Tab. 9b), sample resolutions (Tab. 9c)
and model sizes (Tab. 9d). All times are reported in seconds, measured on a single NVIDIA A40 with GPU warmup and CUDA kernel
synchronization. The default setting is 1-shot, agnostic preprocessing, model size S, and resolution 448 (underlined for reference).

(a) Runtime in dependence of shots.

Shots Inference Memory Bank

1 0.060±0.012 0.52±0.04

2 0.059±0.012 0.85±0.07

4 0.059±0.012 1.58±0.08

8 0.060±0.011 3.05±0.17

16 0.063±0.012 6.02±0.39

full (masking only) 0.067±0.010 16.62±4.43

full (agnostic) 0.130±0.044 93.72±20.56

(b) Runtime in dependence of preprocessing choices.

Mask? Rotate? Inference Memory Bank

no no 0.055±0.011 0.17±0.03

no yes 0.055±0.012 0.51±0.05

yes no 0.068±0.012 0.18±0.03

yes yes 0.067±0.012 0.51±0.04

informed 0.059±0.016 0.22±0.11

agnostic 0.060±0.012 0.52±0.04

(c) Runtime in dependence of image resolution.

Resolution Inference Memory Bank

224 0.043±0.010 0.31±0.04

448 0.060±0.012 0.52±0.04

672 0.086±0.014 0.75±0.06

896 0.141±0.021 1.26±0.05

(d) Runtime in dependence of model size.

Model Size Inference Memory Bank

S (21 M) 0.060±0.012 0.52±0.04

B (86 M) 0.084±0.021 0.77±0.05

L (300 M) 0.141±0.029 1.24±0.06

G (1,100 M) 0.306±0.034 2.67±0.14

periment can be executed on a single NVIDIA A40 GPU).
The runtime is measured with GPU warmup and CUDA
kernel synchronization for a fair comparison.

The results are given in Table 9. The average inference
time per sample with AnomalyDINO-S (448) amounts to
approximately 60ms in the few-shot regime (≈ 16.7 sam-
ples/s), and only moderately increases with a larger mem-
ory bank (to 67ms (+11%) for the full-shot scenario with-
out augmentations). Compared to SOTA competitors in the
one-shot regime, this is at least one order of magnitude
faster (see Figure 3). Without any preprocessing steps, the
1-shot inference time amounts to approximately 55ms per
sample (≈ 18 samples/s). When applying both masking and
rotations, the runtime increases from 55ms to 67ms, a mod-
erate increase of roughly 23% (compared to the scenario
without any preprocessing steps). The informed scenario
can reduce the time to build the memory bank, but inference
time is only affected for larger sample sizes. As expected,
higher resolutions and larger architectures lead to increased
runtimes.

C.2. Scoring

In Section 3 we investigate different ways of aggregating
the anomaly scores D on patch-level (in our case, distances
to the nominal memory bank M) to an image-level anomaly
score via a statistic q. Note that the segmentation results
are therefore not affected by the choice of q. A standard
choice is upsampling the patch distances of lower resolu-

tion to the full resolution of the test image using bilinear
interpolation, then applying Gaussian smoothing operation
(we follow [34] and set σ = 4.0), to obtain an anomaly map
A, and set q = max (A). We also evaluate two potential
alternatives of q, our default choice q = mean(H0.01(D))
(mean of the 1% highest entries in D) and q = max(D).

The results in Table 10 show that just the maximum
patch distance leads to already good results while upsam-
pling and smoothing the patch distances giving slightly
weaker results (maximum of A).

Taking the mean of all patch distances above the 99%
quantile (q = mean(H0.01(D))) improves above the stan-
dard choice. We did not optimize over the percentile and
instead fixed it to 99%. Typically, the number of patches
per image ranges between 200 and 1000 (depending on
resolution and masking), such that 2 between 10 patches
are considered. For specific products/objects and expected
anomaly types, other statistics q might be (more) suitable.

C.3. Architecture Size

DINOv2 is available in different distillation sizes (S, B,
L, and G). This section analyzes the implications of choos-
ing different backbone sizes for AnomalyDINO. The com-
parison including the best competing methods is depicted
in Figure 16. We see that different architecture sizes have
indeed an effect on the image-level AUROC.

On MVTec-AD, we see that AnomalyDINO-S performs
best, followed by the next larger model AnomalyDINO-B



Table 10. Effect of aggregation statistics q on the detection performance on MVTec-AD and VisA, evaluated for AnomalyDINO-S (448).
D denotes the set of patch distances to the nominal memory bank, H0.01(D) the 1% highest entries thereof, and A denotes the anomaly
map derived from D (anomaly scores for each pixel, after upsampling and smoothing, see Section 3). All results in %.

Scoring q = mean(H0.01(D)) q = max(D) q = max(A)

Shots AUROC F1-max AP AUROC F1-max AP AUROC F1-max AP

M
V

Te
c-

A
D

1 96.5±0.4 96.0±0.2 98.1±0.3 95.0±0.5 94.7±0.2 97.4±0.4 94.9±0.7 94.6±0.6 97.5±0.4

2 96.7±0.8 96.5±0.4 98.1±0.7 95.5±1.0 95.3±0.5 97.4±0.6 95.0±1.3 94.8±0.8 97.4±0.9

4 97.6±0.1 97.0±0.3 98.4±0.3 96.6±0.2 96.0±0.1 97.8±0.4 96.3±0.4 95.7±0.2 98.1±0.3

8 98.0±0.1 97.4±0.1 99.0±0.2 97.2±0.1 96.5±0.4 98.6±0.1 97.0±0.0 96.3±0.1 98.6±0.1

16 98.3±0.1 97.7±0.2 99.3±0.0 97.6±0.2 96.9±0.3 98.9±0.1 97.4±0.1 96.6±0.2 98.8±0.1

V
is

A

1 85.6±1.5 83.1±1.1 86.6±1.3 82.4±1.9 81.4±1.0 84.0±1.7 80.5±1.3 80.6±0.8 82.1±0.9

2 88.3±1.8 84.8±1.2 89.2±1.3 85.1±1.8 82.5±1.3 86.4±1.1 83.3±1.8 82.2±1.1 84.5±1.5

4 91.3±0.8 87.5±1.0 91.8±0.7 88.4±0.3 84.9±0.6 89.0±0.4 86.8±1.4 84.3±0.9 87.6±1.3

8 92.6±0.1 88.6±0.2 92.9±0.2 90.0±0.3 86.3±0.2 90.6±0.5 88.8±0.5 85.3±0.3 89.7±0.3

16 93.8±0.1 89.9±0.3 94.2±0.3 91.6±0.5 87.2±0.7 92.2±0.4 90.5±0.3 86.8±0.5 91.5±0.4
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Figure 16. Effect of model size on detection AUROC for MVTec-AD and VisA (mean and std over three seeds). The image resolution of
AnomalyDINO is set to 672. Note, that the results for WinCLIP+ for 8 and 16 shots are those of the WinCLIP re-implementation [21].

(which might contrast the common belief that larger models
always perform better). In particular, all architecture sizes
outperform the closest competitor (ADPℓ).

Regarding VisA, larger architectures slightly outperform
our default setting, AnomalyDINO-S. All architecture sizes
are on par with APRIL-GAN at k = 4, but outperform all
competitors for k > 4. Figure 16 also showcases that the
performance of the proposed method scales preferably with
the number of reference samples.

C.4. Backbone Choice

In our experiments, we find that DINOv2 provides excel-
lently suited features for few-shot AD. This is already evi-
dent in Fig. 3, here we investigate the effect on the detection

performance on MVTec-AD and VisA in more detail.
We compare the performance in few-shot AD of

ViT-B and ViT-L pre-trained on ImageNet to that of
AnomalyDINO-B and AnomalyDINO-L (utilizing DI-
NOv2 in distillation sizes B and L). To ensure comparabil-
ity, we deactivate any pre- and postprocessing for Anoma-
lyDINO (no augmentations, no zero-shot masking) and set
the image resolution to 224 for all models.

The results are depicted in Figure 17. We observe that
DINOv2 significantly improves the detection performance
compared to those of the ViT pre-trained on the image clas-
sification tasks, giving a performance gain of at least +4%
AUROC on MVTec-AD and VisA. This demonstrates that
the features extracted by DINOv2 are better suited com-
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Figure 17. Effect of backbone choice DINOv2 (trained in a self-supervised fashion) compared to ViT (supervised training on ImageNet) on
detection AUROC for MVTec-AD and VisA (mean and std over three seeds). For better comparability, image resolution of AnomalyDINO
is 224 for all models.

pared to those of ImageNet-pretrained ViT-{B/L}.
In Sections 3 and 4 we demonstrate that further (sub-

stantial) improvements are possible with suitable pre- and
postprocessing like augmentations and zero-shot masking
(which is not possible based on the features from super-
vised features) and that the image resolution (or the effec-
tive patch size) can also greatly boost performance. See
also Fig. 16 for the performance in dependence of the model
size.

D. Extending AnomalyDINO to the Batched
Zero-Shot Setting

We extend the proposed method to the batched zero-shot
setting. Recall, that in this setting all test samples Xtest are
provided (or at least a sufficiently large batch), but no (la-
beled) training or reference samples. The underlying (and
necessary) assumption to meaningfully predict anomalies
solely based on test samples, is that the majority of samples
(or in our case, patches) at test time are from the nominal
data distribution (see e.g., [22]).

We need to alter our method, outlined in Section 3, only
slightly to adapt it to the batched setting. We score a test
sample x(j) ∈ Xtest in comparison to all remaining test
sample Xtest \ {x(j)}, following the idea of mutual scor-
ing [24]. For each test sample x(j) ∈ Xtest we therefore
collect all patch representations not belonging to x(j) in a
memory bank, again utilizing DINOv2 as patch-level fea-
ture extractor f ,

Mj :=
⋃

x(i)∈Xtest\{x(j)}

{
pm | f(x(i)) = (p1, . . . ,pn), m ∈ [n]

}
.

(5)

We need to infer anomaly scores for each patch rep-
resentation ptest of x(j). We could again assess the dis-
tances between ptest and Mj based on the distance to the
nearest neighbor, as done in Equation (2). Note, however,
that Mj may now contain nominal and anomalous patches.
Thus, the nearest neighbor approach is not suitable any-
more: the nearest neighbor in Mj for (the representation
of) an anomalous patch might also be abnormal, and the
resulting distance therefore not informative.

A simple solution, based on the assumption that the ma-
jority of patches are nominal, is to replace the nearest neigh-
bor with a suitable aggregation statistic over the distribution
of patches distances in Mj

D(ptest,Mj) :=
{
d(ptest,p) | p ∈ Mj

}
, (6)

where we again use the cosine distance d, defined in Equa-
tion (3). Specifically, we can again make use of the tail
value at risk—now for the lowest quantile as we are in-
terested in the tail behavior of the distribution of distances
to the nearest neighbors—to derive a patch-level anomaly
score

s(ptest) := mean
(
Lα

(
D(ptest,Mj)

))
, (7)

where Lα(D) contains the values below the α quantile of
D. We set α = 0.1% as anomalous patches are rare
by assumption, and D(ptest,Mj) large enough to accu-
rately estimate the tail of the distribution.7 The image-level
score s(xtest) is again given by aggregating the patch-level
anomaly score following Equation (4). Computation of the

7For MVTec-AD the total number of test patches extracted by DINOv2
(ViT-S) at a resolution of 448 range between 43.008 and 171.008 per cate-
gory, and for VisA between 163.200 and 334.464.



cosine distances and the proposed aggregation statistics can
be effectively implemented as matrix operations on GPU
such that the batched zero-shot inference time for Anoma-
lyDINO amounts to roughly 60 ms/sample for MVTec-AD
at a resolution of 448 (again measured on an NVIDIA A40
GPU). Some resulting anomaly maps in the batched zero-
shot setting are depicted in Figure 18.

Figure 18. Anomaly maps for the batched zero-shot setting on
MVTec-AD. The left-most sample in each category is a ‘good’ test
sample for reference, followed by four randomly picked samples
with anomalies.

E. Broader Impacts

Advancing few-shot visual anomaly detection methods
can offer various benefits by enhancing manufacturing qual-
ity control through the rapid identification of defects with
minimal nominal examples, which improves efficiency, re-
duces waste, and improves overall safety in the product life-
cycle. Similar positive benefits can be expected outside the
industrial domain, e.g., for healthcare diagnostics or envi-
ronmental monitoring. It is, however, essential to recog-
nize the shortcomings of automated anomaly detection sys-
tems. We believe that simpler methods can be adapted more
quickly, monitored more effectively, and are therefore more
reliable. In this context, awareness of the risks of over-
reliance must be heightened (see Appendix B for identi-
fied failure cases of the proposed method). In addition,

strong visual anomaly detectors could also lead to poten-
tially malicious or unintended uses. To address these con-
cerns, including potential privacy infringements and possi-
ble socioeconomic impacts of automation, strategies such
as establishing robust data governance, and implementing
strict privacy protections are essential. Additionally, invest-
ing in workforce development can help manage the socioe-
conomic effects of automation and leverage the full poten-
tial of strong visual anomaly detection.
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