Cascaded Dual Vision Transformer for Accurate Facial Landmark Detection

Technical Appendix

In this supplementary material, we provide more details
and results omitted from the main paper for brevity. Specif-
ically, in Sec. A, we introduce the GPU memory require-
ment; in Sec. B, we compare our method by training and
testing networks with similar computational capacity; in
Sec. C, we investigate the impact of input image resolution;
and in Sec. D, we present visual comparisons on the COFW
and 300W datasets.

A. GPU Memory Requirement

In Tab. S1, we report the memory required for each GPU
during training, as well as the number of parameters for dif-
ferent numbers of prediction blocks.

#Pred. Blocks 2 4 6 8 10 12

Memory (GB) 4.4 6.3 82 103 121 14.2
#Param. M) 244 484 724 964 1204 1444

Table S1. Memory required for each GPU during training, and
number of parameters for different numbers of prediction blocks.

B. Comparison on Similar Compute Capacity

Our proposed Long Skip Connection avoid losing use-
ful information due to intermediate supervision and make
deeper network architectures feasible. However, improved
performance is not solely attributed to in creased computa-
tional capacity. When we use 4 prediction blocks and re-
duce the dimension of the feature maps to (160, 32, 32),
the number of parameters in our network is comparable to
other baselines. As reported in Tab. S2, the NME score still
surpasses the previous SOTA method LDEQ [2] by 0.08,
indicating the effectiveness of our proposed architecture.

C. Comparison on Different Image Resolutions

We investigate the influence of different input image res-
olutions, as shown in Fig. S1. Specifically, D-VIT improves
the performance by 0.09, 0.08 and 0.07 at resolutions of
64px, 128px, and 256px, respectively, indicating that our
proposed method is not sensitive to the input image size.

Method #Param. (M) NME(]) FRio(}) AUCio(1)
HIH [1] 22.7 4.08 2.60 60.5
SPIGA [3] 60.3 4.06 2.08 60.6
STAR [4] 134 4.02 2.32 60.5
LDEQ [2] 21.8 3.92 2.48 62.4
Ours_nstack4  21.0 3.84 2.44 63.3

Table S2. Comparisons on WFLW dataset. We reduce the number
of network parameters to 21M, denoted as “Ours_nstack4”. Our
proposed method still shows effectiveness.
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Figure S1. NME against different input image sizes on WFLW
dataset.

D. Visual Results on COFW and 300W

In this section, we present the qualitative comparison re-
sults on COFW and 300W. Fig. S3 and Fig. S2 show the
results of different prediction blocks. Fig. S4 and Fig. S5
show the comparisons of different skip connection strate-
gies. With the help of our proposed D-ViT and LSC, the
detection accuracy for landmarks is improved.
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Figure S2. Visual comparison of different prediction blocks on
300W. Green and red points represent the predicted and ground-
truth landmarks, respectively.
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Figure S4. Qualitative results of different skip connection strate-
gies on COFW by using 8 prediction blocks. Green and red points
represent the predicted and ground-truth landmarks, respectively.
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Figure S3. Visual results on the COFW dataset which contains
heavy occlusions. Geometric relations among landmarks play a
crucial role in accurately predicting landmarks on occluded parts
(indicated by orange and yellow circles). Our D-ViT captures
both semantic image features and the underlying geometric fea-
tures among landmarks, enabling our model to make more accu-
rate predictions even in the presence of occlusions.
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Figure S5. Qualitative results of different skip connection strate-
gies on 300W by using 8 prediction blocks. Green and red points
represent the predicted and ground-truth landmarks, respectively.
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