
1. Proof of Proposition 1

Proposition 1 (Jaccard Metric Loss on a hypercube in RD).
∆JML is a semi-metric in [α, β]D ⊆ RD. Specifically,
∀a,b ∈ [α, β]D, we have

(i) Reflexivity: ∆JML(a,b) = 0 ⇐⇒ a ≡ b

(ii) Positivity: ∆JML(a,b) ≥ 0

(iii) Symmetry: ∆JML(a,b) = ∆JML(b,a)

Proof. For any a,b ∈ [α, β]D, JML is defined in [36] as

∆JML(a,b) = 1−
∥a+ b∥1 − ∥a− b∥1
∥a+ b∥1 + ∥a− b∥1

. (1)

(i) Reflexivity. If ∆JML(a,b) = 0, we can derive ∥a −
b∥1 =

∑D
i=1 |ai − bi| = 0. Thus, we have ai = bi,∀i =

1..D, which is equivalent to a ≡ b.
If a ≡ b, we obviously have ∆JML(a,b) = 0.

(ii) Positivity. The property is satisfied because we can
rewrite ∆JML as follows

∆JML(a,b) =
2 ∥a− b∥1

∥a+ b∥1 + ∥a− b∥1
≥ 0,∀a,b ∈ [α, β]D

(2)

(iii) Symmetry. As ∥a + b∥1 = ∥b + a∥1 and ∥a −
b∥1 = ∥b − a∥1,∀a,b ∈ [α, β]D, we obviously
have ∆JML(a,b) = ∆JML(b,a) and this concludes the
proof.

2. Proof of Proposition 2

Lemma 2.1. Let ℓ : [−1, 1] × [−1, 1] → R be defined by
ℓ(x, y) = |y − x||y − x|γI(yx≥0). For any fixed y0 ∈ [0, 1]
(or [−1, 0]), the function ℓ(x, y0) does not have any local
infimum at x ∈ [−1, 0) (or (0, 1]).

Proof. As ℓ(x, y0) is symmetric, without loss of general-
ity, we assume that y0 ∈ [0, 1]. For simplicity, we denote
ℓ(x) = ℓ(x, y0),∀x ∈ [−1, 1]. First, we rewrite ℓ(x) as

ℓ(x) =

{
|x− y0|γ+1 xy0 ≥ 0
|x− y0| otherwise

(3)

∀x ∈ [−1, 0), the function ℓ becomes a decreasing linear
function

ℓ(x) = y0 − x (4)

Therefore, the only potential local infimum is at x → 0−.
However, we have that

lim
x→0−

ℓ(x) = y0 (5)

≥ yγ+1
0 ▷ For γ ≥ 1 and y0 ∈ [0, 1]

(6)

= lim
x→0+

ℓ(x) ▷ y0 > 0

(7)

If y0 ̸= 0, then limx→0− ℓ(x) > limx→0+ ℓ(x). Thus, x →
0− is not a local infimum. On the other hand, if y0 = 0,
then x = y0 = 0 /∈ [−1, 0). Here, we conclude the proof.

Proposition 2 (Stable Focal-L1). Let ℓ : [−1, 1] ×
[−1, 1] → R be defined by ℓ(x, y) = |y−x||y−x|γI(yx≥0).
Given an arbitrary fixed y0 ∈ [−1, 1], we have that ℓ(x, y0)
has only one strictly local and global minimum at x = y0.

Proof. Let ℓ : [−1, 1] × [−1, 1] → R be defined by
ℓ(x, y) = |y − x||y − x|γI(yx≥0). Consider an arbitrary
fixed y0 ∈ [−1, 1]. As ℓ(x, y0) is symmetric, without loss
of generality, we assume that y0 ∈ [0, 1]. For simplicity, we
denote ℓ(x) = ℓ(x, y0),∀x ∈ [−1, 1]. First, we rewrite ℓ(x)
as

ℓ(x) =

{
|x− y0|γ+1 xy0 ≥ 0
|x− y0| otherwise

(8)

(i) y0 ∈ (0, 1]: ∀x ∈ [0, 1], we have that

ℓ(x) = |x− y0|γ+1 (9)

One can observe that

ℓ(x) > ℓ(y0) = 0,∀x ∈ [0, 1]\{y0} (10)

Consider an arbitrary x ∈ [−1, 0), ℓ then becomes a de-
creasing linear function, that is

ℓ(x) = y0 − x (11)

Then, we have the following derivations: ∀x ∈ [−1, 0),

ℓ(x) ≥ inf
x∈[−1,0)

ℓ(x) (12)

= lim
x→0−

ℓ(x) (13)

= y0 ▷ For (11) (14)

> yγ+1
0 ▷ For γ ≥ 1 and y0 ∈ (0, 1] (15)

= ℓ(0) ▷ For (9) and y0 > 0 (16)
> ℓ(y0) = 0 ▷ For (10) (17)

From (10) and (17), we can infer that

ℓ(x) > ℓ(y0),∀x ∈ [−1, 1]\{y0}. (18)

In other words, x = y0 is the only strictly global minimum
of ℓ in [−1, 1].



(ii) y0 = 0: We have that

ℓ(x) = |x|γ+1 (19)

Similarly, one can observe that

ℓ(0) < ℓ(x),∀x ∈ [−1, 1]\{0}, (20)

which implies that x = 0 is the only strictly global mini-
mum in [−1, 1].

From (i) and (ii), we conclude that x = y0 is the only
strictly global minimum of ℓ(x) in [−1, 1].

Furthermore, ℓ(x) is a convex function in [0, 1] as its sec-
ond derivative is non-negative in this domain, that is

∂2

∂x2
ℓ(x) =2(γ + 1)δ(x− y0)|x− y0|γ (21)

+ γ(γ + 1)(x− y0)
2|x− y0|γ−3 ≥ 0,∀x ∈ [0, 1]

(22)

where δ is the Dirac Delta function. Thus, ℓ has at most one
local minimum in [0, 1], which is x = y0. Together with
Lemma 2.1, we conclude that the function ℓ(x) has only
one strictly local and global minimum at x = y0 in [−1, 1].

3. Proof of Proposition 3
Proposition 3 (Stable Focal-L1 as a lower bound of
Focal-L1). LS

FocalL1(f , ỹ) ≤ LFocalL1(f , ỹ),∀f , ỹ ∈
[−1, 1]D.

Proof. We need to prove that LS
FocalL1(f , ỹ) ≤

LFocalL1(f , ỹ),∀f , ỹ ∈ [−1, 1]D.
We denote that

ℓS(ỹi, fi) = |ỹi − fi||ỹi − fi|γI(ỹifi≥0), (23)

ℓ(ỹi, fi) = |ỹi − fi|
|ỹi − fi|γI(ỹifi≥0)

max(|ỹi|, |fi|)
. (24)

Then, the two losses become

LS
FocalL1(ỹ, f) =

1

|Ω|
∑
i∈Ω

ℓS(ỹi, fi), (25)

LFocalL1(ỹ, f) =
1

|Ω|
∑
i∈Ω

ℓ(ỹi, fi). (26)

Because max(|ỹi|, |fi|) ≤ 1,∀ỹi, fi ∈ [−1, 1], we
straightforwardly derive that ℓS(ỹi, fi) ≤ ℓ(ỹi, fi),∀i ∈ Ω.
Thus, we can conclude the proof.

4. Image Processing Details
In the LR setting, the images were resized to a fixed size

of 512 × 512. These images were augmented by random

cropping and random zooming, as well as other augmen-
tations such as random flipping, rotation, color jittering,
gamma correction, Gaussian noises, and cutout. We em-
ployed the Lanczos interpolation filter during resizing, with
a radius of 3, and anti-aliasing scaling. During inference,
the same resizing procedure was applied.

In the HR setting, the training patches were generated
in “offline” and “online” fashions. Regarding the offline
generation, we cropped the patches via a sliding window,
where the window size was in turn 256 × 256, 512 × 512,
512 × 768, 768 × 1024, and 1024 × 1024, before using
scale augmentation. Meanwhile, the online generation cre-
ated randomly cropped patches from the images, where the
size of the cropped patches ranged from 20% to 70% of
the original size. The aspect ratio could vary from 0.8 to
1.2. Both the offline and online patches were augmented
for training. Similar to the LR setting, we used the Lanczos
interpolation filter during resizing, with a radius of 3 and
anti-aliasing scaling. During inference, we used a sliding
window to get patches from the image, and these patches
were resized to 512 × 512 using the same filter. The win-
dow size and the step size were empirically chosen among
several values to achieve the best Dice score on each dataset.
The window size was 256 for DRIVE and STARE, 512 for
CHASEDB1, and 1024 for FIVES and HRF. The step size
ranged from 128 for DRIVE and STARE to 256 for other.

Table S1. Throughput and FLOPs results

Method Images/s FLOPs
IterNet [17] 0.67 2367.2G
FR-UNet [19] 0.34 10872.8G
DUNet [32] 0.24 648.0G
CE-Net [11] 0.59 1408.4G
UNet++ [39] 1.27 11293.7G
UNet [25] 3.37 2104.4G
CTF-Net [35] 1.74 1370.0G
MAGF-Net [16] 0.20 22253.3G
UNet [25] 38.89 42.9G
UNet++ [39] 30.45 230.4G
Swin-UNet [6] 49.52 55.3G
D2SF [23] 15.66 353.8G
DA-Net [33] 37.31 174.1G
Teacher-Student 30.45 230.4G
GeoLS [31, 36] 30.45 230.4G
LS [30, 36] 30.45 230.4G
BLS [36] 30.45 230.4G
SiNGR [8] 30.45 230.4G
Ours (DA-Net) 35.90 174.1G
Ours (Swin-UNet) 49.52 55.3G
Ours (UNet) 41.67 42.9G
Ours (UNet++) 30.45 230.4G


