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A. Supplementary Overview

In this supplementary material we present further results
and ablation analysis on the presented method GaB, imple-
mentation details and qualitative visualization of generated
question-answer pairs. Specifically, while in Section B, we
report extensive results on the method, Section C ablates the
proposed pseudo-rehearsal strategy. We continue with Sec-
tion D and Section E describing in further detail the datasets
and the implementation details of the approach, respectively.
Finally, Section F concludes by providing qualitatives of
generated question answer pairs.

B. Extended Results

We here report extended empirical results for the pro-
posed method GaB, including the intermediate evaluation
of the sequentially training model and the robustness of the
approach to different task orders.

B.1. Per-Task Performance Analysis

We evaluate the performance of the learning VQA model
on the different tasks as training progresses.

Figure 1 showcases the performance variations across var-
ious tasks within the VQACL-VQAv2 benchmark in terms
of AP, highlighting how each continual learning method
adapts over time. As can be noted, despite building on
pseudo-rehearsal samples only, throughout the entire se-
quential adaptation GaB achieves accuracy on par with the
rehearsal strategy that leverage past real data. A similar be-
haviour is observed in Figure 2 detailing the sequential task
performance for the CLOVE-function benchmark during
sequential training.

B.2. Continual Learning Across Task Orders on
CLOVE

Continual learning performance can significantly vary
depending on the order in which tasks are presented. To
explore this variability, we evaluate GaB across three dif-
ferent task orders of the CLOVE-function benchmark. Let
us denote each task with its initial letter, i.e., Objects (0),
Attributes (a), Relations (r), Logical (1) and Knowledge (k),
we consider task orders ‘oarlk’, ‘rolak’, and ‘lkora’.

Table 1. The continual learning performance in terms of AP and AF
on the CLOVE-function dataset considering different task orders.

oarlk lkora rolak
Method AP(1) AF() AP() AF() AP AF)
(Multitesk 3226 .
Rehearsal 41.82 3.14 29.75  13.61 2823 8.57
Seq-FT 2270 2219 1335 2424 1235 2361
GaB w/o balancing 37.01 3.61 25.48 16.9 29.18 797

GaB-clustering (Ours)  40.70 1.40 31.59 10.64  26.17 9.67

The results are summarized in Table 1 in terms of Average
Performance (AP) and Average Forgetting (AF). Despite the
differences in AP and AF across the task sequences, simi-
lar behaviours are observed: our approach GaB-clustering
performs competitively with the rehearsal strategy and it
provides a large margin improvement to the Seq-FT base-
line. Notably, the ‘oarlk’ sequence consistently shows better
performance metrics compared to ‘lkora’ and ‘rolak’, sug-
gesting that the order in which tasks are encountered can
influence the efficacy of the learning process. In the ‘oarlk’
sequence, our GaB-clustering method demonstrated the best
resilience against forgetting with an AF of 1.40, and a high
AP of 40.70, underscoring its robustness in handling the
challenges presented by this particular sequence. We see
a similar trend in the sequence ‘lkora’ where our method
has the best overall AP and AF. Conversely, in the ‘rolak’,
GaB w/o balancing shows the most effective, indicating



Recognition Location

Commonsense Count

80 Seq-FT
Rehearsal
GaB-classifier
GaB-clustering
GaB-pastimages

60

40

20

(€€ \0¢ 4 \\p o «\Q OO o O o0 P (2 €% \0C s \\‘6 o ‘(\‘(\C o o O P o
e <

(€% \0¢ « \\pco «\Q o0 o (O R o (2

(€% \o¢ \\)660‘(\‘%0\) o O @ P (2 (@ ¢ '\\@Lo«\((‘@“ o O 0 o ° 2

-
& Action Color Subcategory Causal
80
60
40
20
0
@\ '\\’dcow‘ﬁo‘) o O off o @0 '\“io((\QO\’ o O ff o 2 @ ¢ '\\’écoﬁ\ﬁo‘) o O of® o 2 @0 '@(\co(o‘(\cf)“ o O R o 2 @ ¢ \\36(‘06\«}-0\) o O off o @
Evaluation Task
Figure 1. Per-task performance in terms of AP across different tasks in the VQACL-VQAvV2 benchmark.
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Figure 2. Per-task performance in terms of AP across different tasks in the CLOVE-function benchmark.

that pseudo-generation aids forgetting mitigation while the
clustering-based balancing strategy might require more care-
ful hyperparameter tuning, such as the number of clusters to
use.

B.3. Balancing Questions

We visualize the question types distribution of re-
hearsal samples before (Generated) and after balancing
(Balanced) with our pseudo-rehearsal balancing module,
compared to the ground truth one (Real). These visualiza-
tions help illustrate the impact of our balancing technique on
the diversity of question types generated during the pseudo-
rehearsal data generation.

Figure 3 illustrates the distribution alignment for VQACL-
VQAvV2 demonstrating how GaB-clustering ensures no single
question type dominates the training process. We show
similar results on CLOVE-function in Figure 4.

C. Further ablations

We further ablate GaB on the number of balancing clus-
ters and the use of the question-answer generation module

for dynamic sampling of the rehearsal data.

C.1. Varying the number of balancing clusters

We explore the impact of varying the number of clusters
in our balanced cluster strategy GaB-clustering. We ablate
to determine the optimal number of clusters that yields the
best performance. The results of this study are illustrated
in Figure 5, which displays the average precision achieved
across different cluster counts K. Our findings indicate
that setting the number of clusters to 7 maximizes average
perfomance.

C.2. Dynamic Pseudo-Rehearsal

Traditional rehearsal strategies for continual learning are
constrained in the buffer dimension due to the limited avail-
ability of question-answers from previous tasks. Thanks to
the dynamic generation of samples, pseudo-rehearsal strate-
gies could possibly rely on larger replay buffers instead. We
here explore a dynamic version of the presented approach
(GaB-dynamic) where pseudo-samples are generated on-
the-fly based on current task data. At each training step this
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Figure 3. Question distribution before and after pseudo-rehearsal balancing for the VQACL-VQAvV2 benchmark. The figure shows the
distribution across different question categories for old tasks (as per plot title) generated from last task count visual images.
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Figure 4. Question distribution before and after pseudo-rehearsal balancing for the CLOVE-function benchmark. The figure shows the
distribution across different question categories for old tasks (as per plot title) generated from last task knowledge visual images.
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Figure 5. The continual learning performance of GaB-clustering in
terms of AP when varying the number of balancing clusters K on
the VQACL-VQAV2 dataset.

method involves dynamically generating a question related
to previous tasks for each current batch visual image. As the
alignment of the question distributions is non-trivial in the
batch low-samples setting, no balancement to the generated
questions-answer pairs is applied.

Table 2 compares the approaches in terms of AP and AF
for the CLOVE-function setting. Despite the larger number
of replay samples available to GaB-dynamic, the results in-
dicate that GaB-clustering achieves the highest performance

Table 2. The continual learning performance in terms of AP and
AF on the CLOVE-function dataset.

Method AP (1) AF (1)
GaB-dynamic 36.17 5.26
GaB-classifier (Ours) 37.97 5.25
GaB-clustering (Ours) 40.70 2.26

with a +4.53% and -3% in the AP and AF metrics, respec-
tively. Intuitively, we observe limited variability of QA
samples that could be generated within each batch with a
consequent drop on the final performance.

D. Dataset Details

We provide comprehensive details on both datasets uti-
lized in our study. The VQACL-VQAv2 benchmark is com-
prised of 10 distinct tasks, each with its own set of ques-
tions tailored to specific aspects of visual and textual un-
derstanding. The different tasks considered are in order:
Recognition, Location, Judge, Commonsense,
Count, Action, Color, Type, Subcategory and
Causal. We refer the reader to the original paper for ex-
tensive details on the benchmark. On the other hand, the
CLOVE benchmark includes 6 tasks. For fair comparison,



we restrict our evaluation to only 5 tasks due to the special-
ized architecture and auxiliary features needed for answering
scene-text questions asking to OCR present text.

Each task within these datasets is associated with ques-
tions that are categorized into various types depending on
their content and focus. These question types are labeled
systematically to facilitate targeted training and analysis.
While in VQACL-VQAvV2 meta-information on question
types models the initial words used in the question construc-
tion, e.g. “what type”, ’is the”, "where is”, how many”,
differently, CLOVE-function auxiliary information models
the property being queried and the expected answer, for

99 99

instance "MaterialChoose”, "activityWho” or “’rel Verify”.

E. Implementation details

We implement our strategy in PyTorch [3] and employ the
Hugging Face' implementation of the BLIP-2[ 1] architec-
ture, specifically the opt -2 . 7b version. For textual genera-
tion, we follow standard practice and fix the max_new_tokens
for both generated answers (2 tokens) and pseudo QA pairs
(20 tokens). The repetition penalty is set to 1.2. In line
with prior work, we prompt BLIP-2 for answer genera-
tion with the prompt p="Question: <question>
Answer: ", while pseudo-QA has an empty prompt p="",
akin to the original BLIP-2 strategy.

Baselines. We implemented continual learning strategies
following an open-source codebase for CL[2]. The strategies
are applied to the same BLIP-2 architecture as GaB. For the
regularization-based methods, Elastic Weight Consolidation
(EWC) and Memory Aware Synapses (MAS), we set the
regularization parameters to 1.0 and compute importance
weights on the token classifier generating the output textual
sequence. For the Learning to Prompt (L2P) approach the
prompting strategy is applied to the visual encoder only. We
adopt different configurations depending on the benchmark:
for VQACL-VQAV2, we utilize a prompt pool size of 10
with a regularization parameter of 1.0, whereas for CLOVE-
function, the prompt pool size is increased to 50 and the
regularization parameter is adjusted to 0.5. These settings
are carefully chosen to optimize performance across the
diverse conditions presented by each benchmark.

F. Qualitatives Results

We report qualitative results on the generated question-
answer pairs providing both positive and negative examples.
In Figure 6-a and Figure 6-b GaB successfully generates
both accurate and contextually appropriate questions and
accompanying answers. For instance, questions such as
“What material is the floor made of?” with the answer “tile”

'https://huggingface.co/

Table 3. Computational overhead in terms of training parameters
and time. Param count indicates the fraction of trained parame-
ters, T 1ops indicates Tera Flops in forward+backward passes in
1 epoch, Computational time metrics report the processing
time requirements (in seconds) per one epoch of a single task in
CLOVE-function across different methods.

Method Param count TFlops Computational time (s)
Training Generation Balancing
Rehearsal 0.05 2711.05 35,085 n.a. n.a.
LAMOL* 0.1 5670.19 49,650 363 n.a.
GaB-clustering (Ours) 0.3 3568.38 42,885 1,452 273

and “Is there a bear in the picture?” with the answer “yes”
demonstrate the model’s ability to understand and respond
correctly based on the visual data. Differently, in Figure 6-
¢ we highlight a scenario where the generated question is
vague and lacks specificity. An example from this row in-
cludes a question like “What color is the jacket?” which,
although correct (answered as “orange’), does not specify
which jacket to look for as there are multiple people wearing
jackets in the image. Finally, Figure 6-d presents instances
where the model’s generated answers are incorrect. For ex-
ample, the question “How many planes are there?” receives
the answer “3”, whereas we can clearly see there are in fact
only 2 airplanes, indicating the model’s challenges in some
contexts or its misinterpretation of the visual content.

G. Complexity overhead discussion

As a data-free rehearsal strategy GaB trades-off the
prohibited access to past tasks data with increased com-
putational complexity for sample generation. More pre-
cisely, GaB requires two passes of the employed VLM: a
first forward-backward pass trains the qa projection layer
(fv—qa) and answer projection layer ( f,_,,) while the sec-
ond forward pass allows to generate rehearsal data pairs.
Limited overhead is required for balancing the questions ac-
cording to precomputed real-data clustering statistics, with
no need for further modification. Only the task-specific pro-
jection heads and answering head are trained, while the rest
of the model remains frozen, making the process computa-
tionally efficient. We evaluate the computational overhead
for pseudo-rehearsal generation and balancing of the pre-
sented approach, results are presented in Tab. 3, where we
can see that the approach falls behind the rehearsal base-
line while being competitive with the data-free version of
LAMOL*. Both GaB and LAMOL* suffer from the longer
training time due to the requirements of learning how to
generate question-answer pairs, however, GaB avoids replay-
ing for the generation task, ending up with shorter training
time at the cost of larger number of training parameters. No
additional computation is required at inference time where
task-specific heads can be discarded and the single shared
answering head solves for the VQA task.
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Figure 6. Qualitatative results of GaB generated QA pairs on VQACL-VQAV2 datasets. (a)-(b) Correctly generated questions answer pairs;
(¢) question-answer pairs with ill-posed questions; (d) question—answser pairs with wrong generated answers.
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