
Appendix
A. Corruption Functions

We used the benchmark from [3] to introduce 15 com-
mon types of corruption occurring in real-world point
clouds to evaluate the performance of our 3DD-TTA algo-
rithm. Below is a brief explanation of each corruption func-
tion:

Uniform: Each point in the point cloud is perturbed by
adding random noise sampled from a uniform distribution
within the range of [-0.05, 0.05]. This type of noise intro-
duces a uniform displacement across the points, simulating
mild yet consistent distortions in all directions.

Gaussian: Points in the point cloud are randomly per-
turbed by adding Gaussian noise, where the noise is sam-
pled from a normal distribution with a standard deviation
of 0.03. This introduces subtle yet widespread deviations
in the spatial positions of the points, simulating real-world
sensor noise or environmental interference. Such pertur-
bations can blur fine details and distort surface structures,
challenging the model’s ability to accurately interpret the
point cloud.

Background: Generates 5% of the number of points
within the range of -1 to 1 using a uniform distribution and
concatenated them with the original point cloud.

Impulse: 10 percent of the points in the point cloud are
randomly chosen and perturbed by adding impulse noise
with random values of +0.1 and -0.1.

Upsampling: Additional points are generated by dupli-
cating existing points in the point cloud. The newly gener-
ated points are perturbed versions of the original points with
uniform corruption.

RBF: Point clouds are deformed using the Radial Basis
Function [1].

Inverse RBF: The Radial Basis Function [1] and the re-
sulting splines are inverted

Local Density Decrease: Five points are randomly se-
lected from the point cloud as cluster centers, and their
100 nearest neighbors are identified. The density is then
decreased by removing three-quarters of the points within
these clusters.

Local Density Increase: Five local cluster centers are
randomly selected, and their 100 nearest neighbors are iden-
tified. These clusters are preserved, while the remaining
points are resampled to maintain the original total number
of points. As a result, the density of points within these
clusters is doubled compared to the rest of the point cloud.

Shear: The point clouds in the xy-plane undergo ran-
dom transformations through compression or stretching,
where the x and y coordinates are scaled by random fac-
tors ranging between −0.25 and 0.25. This process intro-
duces geometric distortions that simulate non-uniform scal-
ing in the 2D plane. Such perturbations can affect the over-

all structure of the point cloud, making it more challenging
for models to retain key shape features.

Rotate: The point cloud is randomly rotated in 3D space
by an angle between ±15◦. This type of corruption in-
troduces subtle but impactful transformations that alter the
orientation of the object while preserving its structural in-
tegrity. These small rotations are challenging for models to
handle, as they must maintain consistent classification per-
formance despite the varying orientations.

Cut-out: Five points are selected as cluster centers, and
their 100 nearest neighbors are identified and removed from
the point cloud.

FFD: Free Form Distortion (FFD) [2] (denoted as ”dist”
in tables) with 25 control points with a deformation distance
in a range of ±0.5 is applied to the point clouds.

Occlusion: This corruption deletes portions of the point
cloud using precomputed meshes and ray tracing from a
random camera position [4]. The occluded points are ef-
fectively ”hidden” or removed, simulating scenarios where
parts of the object are not visible due to obstruction. This
tests the model’s ability to adapt and reconstruct partially
visible or occluded objects.

LiDAR: The LiDAR capturing of point clouds is simu-
lated, adding inaccuracies such as occlusion, reflection, and
noise.

B. SCD Distance Hyperparameter

We conducted a thorough analysis of the λ parameter,
which controls the tightness of the SCD distance (lλCD)
and influences the similarity between the reconstructed and
original corrupted latent points. A higher λ value increases
this similarity, but choosing the optimal value is critical for
achieving effective test-time adaptation. For this analysis,
we again focused on background noise, as it requires more
denoising steps, making it an ideal case for studying the
impact of λ. Figure 6 (left) shows that the optimal value
of λ = 0.96 strikes a balance: lower values fail to guide
the diffusion process effectively, while values approaching
1 cause the diffusion process to overfit to the corrupted la-
tent points, including outliers, which hampers the final clas-
sification performance. This over-reliance on the corrupted
points leads to a degradation in adaptation performance, as
the model becomes overly focused on the noise rather than
the underlying clean structure. Hence, choosing λ = 0.96
avoids these extremes, offering a more robust adaptation.
The implementation codes will be made publicly available
upon the acceptance of this paper. We plan to release them
on a dedicated repository to ensure transparency and facili-
tate further research in this domain.
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Figure 6. (left) Accuracy of the source classifier after adaptation across different values for the SCD hyperparameter (λ). (right) Accuracy
of the source classifier after adaptation using various shape latent updating coefficients (η).
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Figure 7. Qualitative assessment of the proposed test-time adaptation across various corruptions shows that the 3DD-TTA model excels in
resolving noise corruptions, including uniform, background, impulse, and Gaussian noise. The model can also fill in missing parts within
the point cloud and is effective in addressing inverse RBF deformation.

C. Impact of Shape Latent Updating:

We conducted experiments to explore the impact of up-
dating the shape latent via gradient descent during the de-
noising process on the overall performance of the test-time
adaptation (TTA) task. In these experiments, we fixed other
hyperparameters and performed a grid search for differ-
ent values of the shape latent updating coefficient (η). We
specifically used background noise as a special case, as it
requires more denoising steps, allowing for a more detailed
analysis. Figure 6 (right) illustrates the performance of the
source classifier across different values of η, with η = 0
representing no shape latent update. The results indicate
that for all values of η greater than zero, there is a notice-
able improvement in performance, with η = 0.01 achieving

the highest classification accuracy. Consequently, we set η
to 0.01 in all subsequent experiments. This figure further
demonstrates that an optimal choice of η can enhance the
classification rate by up to 2.5 %.

D. More Reconstruction Results

Figures 7 and 8 present additional examples of corrupted
point clouds and their adapted versions produced by the
proposed 3DD-TTA method. The model demonstrates ef-
fectiveness in reconstructing the point clouds by resolving
inconsistencies in density and eliminating noise. While the
method is not flawless in handling all transformation-based
corruptions, it shows the ability to address certain defor-
mations, such as RBF-inv and shear, to a notable degree.
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Figure 8. More examples for the qualitative assessment of the proposed test-time adaptation across various corruptions.

It is worth highlighting that this reconstruction is achieved
within a training-free pipeline, performed entirely as test-
time adaptation, which significantly enhances its practical
value. Unlike other point cloud reconstruction and denois-
ing methods that rely on supervised training with paired cor-
rupted and ground-truth point clouds, our approach adapts
the input point clouds without requiring access to any paired
training data, making it well-suited for real-world applica-
tions where labeled data is scarce or unavailable. This abil-
ity to generalize without explicit training offers a unique
advantage in dynamic and unpredictable environments.
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