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A. Impact of Hyperparameter on Accuracy & Convergence:
Figure 1 shows that despite using different hyperparameter configurations, the accuracy on both unseen and seen data

consistently converges to a similar value. The primary difference is in the speed of this convergence, with a slight performance
drop observed when α and β are significantly larger than γ.

Figure 1. Seen (S) and Unseen (U) accuracy in different set of (α, β, γ)
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B. Evaluations
We provide experimental comparisons in Tables 1 and 2 against all previously established compositional zero-shot learning

methods, including AoP [9], LE+ [8], TMN [11], SymNet [4], CompCos [6], CGE [8], Co-CGE [7], SCEN [2], KG-SP [1],
CSP [10], and DFSP [5]. Performance is assessed in both closed-world and open-world scenarios.

Method
MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC
AoP [9] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [8] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8

TMN [11] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet [4] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1

CompCos [6] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
CGE [8] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5

Co-CGE [7] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5
SCEN [2] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5
CLIP [12] 30.2 45.9 26.1 11.1 15.8 49.2 15.6 5.0 7.7 24.8 8.4 1.3
CSP [10] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
CSP [10] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
DFSP [5] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5
HOMOE 50.5 54.6 39.9 23.3 68.4 73.9 49.1 37.5 35.8 30.8 24.5 9.1

Table 1. Closed World Evaluation. Comparison to state-of-the-art models

Method
MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC
AoP [9] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [8] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08

TMN [10] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet [4] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43

CompCos [6] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 - - - -
CGE [8] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47

Co-CGEˆClosed [7] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.53
Co-CGEˆOpen [7] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78

KG-SP [1] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78
DRANet [3] 29.8 7.8 7.9 1.5 65.1 54.3 44.0 28.8 31.3 3.9 6.0 1.05
CLIP [12] 30.1 14.3 12.8 3.0 15.6 20.5 11.3 2.2 7.5 4.4 4.0 0.28
CSP [10] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
DFSP [5] 47.5 18.5 19.3 5.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4
HOMOE 50.4 19.7 20.7 7.9 68.4 61.9 45.1 31.1 35.7 6.6 9.0 2.0

Table 2. Open World Evaluation. Comparison to state-of-the-art models
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