Supplementary: Elemental Composite Prototypical Network: Few-Shot Object
Detection on Outdoor 3D Point Cloud Scenes

A. Class-wise Experiment Results of O-FS3D
on nuScenes Validation Set

We report the class-wise mean average precision (mAP)
for each class (including base classes and novel classes) and
official overall mAP and NDS metrics for all the baselines
and and our proposed model in Table 1, 2, 3, 4. We observe
that the performance of our proposed model is superior to the
baselines in all of the cases corresponding to the NDS score.
According to mAP, our model is superior in 2 of the cases
with comparable results concerning the baseline models. It
is also worth noting that our model is performing well in a
class-wise scenario for the novel classes and the base classes
in most of the settings.

B. Performance Analysis on Low Training Data

To assess the efficiency of our proposed method, we com-
pare our method with the baselines in a scenario where the
number of annotations available for training data for novel
classes is scarce. For this set of experiments, we choose
the Novel-Split 3 of the nuScenes dataset (as mentioned in
Section 4.1 of the main paper) and create 4 different episodic
training schemes. In each of these episodic training schemes,
all the baselines and our model use all available annotation
data from base classes but only have access to a few annota-
tions in the novel classes from where they can sample during
each episode, thereby effectively making it more difficult for
the models to train on novel classes as we gradually decrease
the number of available annotations for the novel classes.
This experiment is conducted to understand our model’s abil-
ity to adapt to the scarcity of annotation data compared to
existing baselines. For the first experiment, we allow the
models to sample from all available annotations of the novel
classes viz. The available number of annotations are Bus -
12286, Construction Vehicle - 11050, Bicycle - 8185, and
Traffic Cone - 62964. Hence, the models can sample from
23621 annotations per novel class on average. The results of
average mAP on the novel classes are shown in Table 5 and
the results on official mAP and NDS for all the classes (base
and novel) for Novel-Split 3 are shown in Table 6.

From Tables 5 and 6, we observe that in all training
schemes the performance drops as we lower the number of

available training annotation data for the novel classes. We
also observe that the performance of our proposed method
is consistently superior to the baselines in each of these ex-
periments, thereby proving the effectiveness of our method
under low-data scenarios.

C. Visualization on nuScenes Validation Set

We show the performance of our proposed ECPN (PT +
El-Proto + FSD) on different scenes of the nuScenes valida-
tion dataset in Figure 1. The first row corresponds to results
on VoxelNext trained in the episodic manner (VoxelNext +
EL). The second row corresponds to VoxelNext’s state-of-
the-art fully supervised model and the third row corresponds
to our proposed ECPN coupled with elemental prototypes,
query reweighting, and feature-similarity-discrimination loss
i.e., ECPN (PT + El-Proto + FSD). Compared with the Vox-
elNext SOTA performance, ECPN performs fairly well for
both base classes (green bounding boxes) and novel classes
(blue boxes) in few-shot settings.

D. Visualization on In-house Outdoor dataset

We build an in-house outdoor 3D dataset by collecting
3D scenes using a 16 beam synced Velodyne PUCK Hi-
Res LiDAR sensor'. This dataset significantly differs from
NuScenes on which our proposed model has been trained
and analyzed. Key differences include over-crowded sce-
narios, and a low-resolution LiDAR sensor used to capture
data different from what was used to capture NuScenes data
(NuScens uses 32-beam synced LiDAR sensor). Our dataset
contains 300 frames per scene.

We use our proposed model which is trained on NuScenes
in a few-shot episodic manner and run inference on our in-
house outdoor dataset without any extra fine-tuning. We
show qualitative results in Figure 2 that have been achieved
by our proposed ECPN (PT + El-Proto + FSD) model.

In the figure, we show 4 frames each belonging to 3
different outdoor scene scans (in Row 1, 3, 5), and their
corresponding outputs (in Row 2, 4, 6) for qualitative vi-
sualization. Each output contains one or multiple object
bounding boxes with their color code as the classification ID

'LiDAR Specification: https:/ouster.com/products/hardware/vip-16
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Novel Split - 1 (1st Random Split)
Method Novel Classes Base Classes mAP NDS
Trailer C.V Byc T.C Car  Truck Bus Ped Mot  Barrier
VoxelNext + EL 0.40 0.00 0.00 1040 | 000 0.00 320 000 6.60 0.00 205  7.09
VoxelNext + PT + EL 1.50  14.50 22.10 3280 | 0.00 3090 62.5 34.00 5810 21.40 | 27.78 42.33
VoxelNext + PT + Avg-Proto + EL | 7.96 6.70  6.09 4156 | 75.77 4936 4793 76.15 5476 5598 | 4223 42095
ECPN (PT + El-Proto + FSD) 16.61 736 21.03 4040 | 7296 49.83 61.96 7727 47.66 52.09 | 44.72 47.25

Table 1. Class-wise results of O-FS3D experiments on novel split 1 of nuScenes object detection validation dataset. We report class-wise
mAP and official overall mAP and NDS. EL: Episodic Learning; PT: Pre-training; Avg-Proto: Average Prototypes; El-Proto: Elemental
Prototypes; FSD: Feature-Similarity-Discrimination Loss

Novel Split - 2 (2nd Random Split)
Method Novel Classes Base Classes mAP NDS
C.V  Barrier Mot Ped Car Truck Bus Trailer Byc T.C
VoxelNext + EL 0.00 0.00 9.04  0.00 0.00 0.00 1.05 0.00 0.55 8.51 1.92 8.10
VoxelNext + PT + EL 0.00 5.22 38.04 38.79 | 0.00 36.21 4553 1498 31.13 54.57 | 26.45 38.35
VoxelNext + PT + Avg-Proto + EL | 7.03  22.01 4298 56.41 | 74.62 47.82 62.62 23.66 20.03 59.08 | 41.63 4290
ECPN (PT + El-Proto + FSD) 6.74 21.09 41.61 67.14 | 7031 4292 63.14 27.37 3320 60.23 | 43.38 45.88

Table 2. Class-wise results of O-FS3D experiments on novel split 2 of nuScenes object detection validation dataset. We report class-wise

mAP and official overall mAP and NDS. EL: Episodic Learning; PT: Pre-training; Avg-Proto: Average Prototypes; El-Proto: Elemental
Prototypes; FSD: Feature-Similarity-Discrimination Loss

Novel Split - 3 (Least examples in each group)
Method Novel Classes Base Classes mAP NDS
Bus C.V  Byc T.C Car  Truck Trailer Ped Mot  Barrier
VoxelNext + EL 505 000 0.00 1532 | 0.00 0.00 0.00 0.00 4.70 0.00 251 614
VoxelNext + PT + EL 3447 044 1628 2235 | 0.00 1222 18.64 51.15 4858 898 | 21.31 3749
VoxelNext + PT + Avg-Proto + EL | 41.19 6.64 1440 3337 | 77.20 46.06 27.97 77.71 53.89 53.64 | 43.21 42.50
ECPN (PT + El-Proto + FSD) 4092 736 18.55 37.14 | 76.85 43.61 20.84 75.07 51.05 4540 | 41.68 44.68

Table 3. Class-wise results of O-FS3D experiments on novel split 3 of nuScenes object detection validation dataset. We report class-wise

mAP and official overall mAP and NDS. EL: Episodic Learning; PT: Pre-training; Avg-Proto: Average Prototypes; El-Proto: Elemental
Prototypes; FSD: Feature-Similarity-Discrimination Loss

Novel Split - 4 (Least examples in the dataset)
Method Novel Classes Base Classes mAP  NDS
Bus C.V Mot Byc Car  Barrier Trailer Ped Truck T.C
VoxelNext + EL 552 000 759 0.12 | 0.00 0.00 0.00 0.00 000 1223 | 255 8.82
VoxelNext + PT + EL 20.2 081 30.83 16.21 | 0.00 20.87 26.06 4596 2690 5490 | 2429 37.99
VoxelNext + PT + Avg-Proto + EL | 41.86 6.86 37.78 17.72 | 77.30 53.44  26.29 7538 4229 6537 | 44.44 4288
ECPN (PT + El-Proto + FSD) 4518 7.29 3824 16.13 | 76.00 53.76 21.61 80.40 43.72 59.90 | 44.23 46.44

Table 4. Class-wise results of O-FS3D experiments on novel split 4 of nuScenes object detection validation dataset. We report class-wise

mAP and official overall mAP and NDS. EL: Episodic Learning; PT: Pre-training; Avg-Proto: Average Prototypes; El-Proto: Elemental
Prototypes; FSD: Feature-Similarity-Discrimination Loss

Avg mAP on Number of Annos. Per Novel Class Overall mAP and NDS on Number of Annos. Per Novel Class
Method 23621 (Avg.) | 8000 | 5000 1000 Method B0l ey [ B o T
m. m. m. m.
VoxelNext + PT + EL 18.39 13.74 1 13.15 9.1 VoxelNext + PT + EL 2131 | 3749 | 23.73 | 40.73 | 19.81 | 3933 | 17.63 37.08
VoxelNext + PT + Avg-Proto + EL 23.90 1891 | 1578 11.63 VoxelNext + PT + Avg-Proto + EL | 43.21 | 42.50 | 40.39 | 43.67 | 38.68 | 41.56 | 37.65 41.74
ECPN (PT + El-Proto + FSD) 25.99 19.41 | 17.93 12.11 ECPN (PT + El-Proto + FSD) 41.86 | 44.68 | 39.60 | 41.75 | 39.57 | 44.60 | 37.19 4231

Table 5. Results of O-FS3D experiments on Novel-Split 3 of
nuScenes validation dataset on a low-data training scheme. The
average mAP of all the novel classes in the Novel-Split 3 is reported.
EL: Episodic Learning; PT: Pre-training; Avg-Proto: Average Pro-
totypes; El-Proto: Elemental Prototypes; FSD: Feature-Similarity-
Discrimination Loss

Table 6. Results of O-FS3D experiments on Novel-Split 3 of
nuScenes validation dataset on a low-data training scheme. The
official mAP and NDS of all classes (base and novel) in the Novel-
Split 3 are reported here. EL: Episodic Learning; PT: Pre-training;
Avg-Proto: Average Prototypes; El-Proto: Elemental Prototypes;
FSD: Feature-Similarity-Discrimination Loss

of the object. The outdoor data contains car as base-class with Red bounding boxes. Pedestrian, and Motor-cycle are
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Figure 1. Qualitative Results on the nuScene validation dataset. The first row corresponds to the results of VoxelNext + EL, the second row
corresponds to the results of Fully Supervised VoxelNext SOTA as per and the third row corresponds to the results of ECPN (PT + El-Proto +
FSD). We use green for the base class and blue for the novel class bounding boxes. PT: Pre-Training; El-Proto: Elemental Prototypes; FSD:
Feature-Similarity-Discrimination Loss



Figure 2. Visualization on Inhouse Outdoor dataset. Row 1, 3, and 5 are input from the LiDAR sensor to the model. Row 2, 4, and 6 are
corresponding outputs with colored bounding boxes shown in the prediction. Red corresponds to Car, Blue corresponds to Pedestrian, and

corresponds to Motor-cycle.

Method mAP NDS | Car

Truck Bus

Trailer C.V. Ped Mot Byc T.C. Bar

VoxelNext [2] | 60.0 67.1 | 85.6 58.4

71.6

386 179 854 597 434 70.8 68.1

Table 7. Fully supervised results of VoxelNext on nuScenes validation dataset as reported in [2]. C.V.: Construction Vehicle, Ped: Pedestrian,

Mot: Motorcycle, Byc: Bicycle, T.C.: Traffic Cone, Bar: Barricade

novel-classes with Blue, and bounding boxes. We
also provide a demo video of the frames from these scenes
being predicted.

E. Inference Time Analysis

We conduct two different inference time analyses on
our proposed architecture using NuScenes and our outdoor
dataset. We run inference on 5 different scenes for both
datasets and report the average inference time for an in-
put 3D scene. For the NuScenes dataset and our outdoor

datasets, the average inference time is 0.2096 seconds, and
0.1125 seconds per scene, respectively. As evident from this
inference time analysis, the quality of the input 3D scene,
density of points, and overall number of points in the scene,
etc. have a direct impact on the inference time. Since our
data was captured with a 16 beam synced LiDAR and the
nuScenes data was captured with a 32 beam synced LiDAR
sensor, there are about twice as many points in each scene
of the nuScenes dataset compared to ours. Hence, it also
takes about twice the time to infer one scene from nuScenes



compared to our dataset.

F. Supervised VoxelNext Results

Since we use VoxelNext [2] in all of our baselines and our
proposed method, we add the fully supervised VoxelNext
results for the nuScenes dataset for comparison purposes.
Table 7 represents the results.

G. Related Works

In this section, we discuss the related works in detail for
a comprehensive overview of the field.

3D Point Cloud Object Detection: Current approaches
for 3D point cloud object detection can be categorized into
three main types: voxel based, point based and combined
point-voxel based methods. In voxel-based approach [2, 8,

], the point cloud is projected onto 2D grids or 3D voxels,
allowing the use of CNNs directly. Point-based methods [22,

,37], on the other hand, provide raw point cloud as input
to feature extraction networks, such as PointNet++ [15], to
generate features for individual points before detection. The
point-voxel based methods combine both, for example, STD
[37] utilizes PointNet++ to extract semantic information
from sparse points, which are then voxelized for detailed
refinement. Similarly, PV-RCNN [21] integrates 3D sparse
convolution with PointNet-like set abstraction to enhance
semantic discrimination. Comparing the three subdivisions,
voxel-based methods remains the most promising option
for outdoor real-time applications [16]. While these fully
supervised methods have achieved impressive 3D detection
performance, they require large amounts of training data,
which can be expensive in many real-world scenarios. To
the best of our knowledge, there are no few-shot learning
strategies designed for such voxel-based object detection
methods.

Few-Shot Learning: Recent few-shot learning (FSL)
methods predominantly rely on meta-learning. They fall into
three main categories: metric-based, optimization-based and
model-based. Metric-based methods [0, 11,23,25,28,39]
aim to learn a function for embedding tasks and predicting
labels based on distances. For instance, the Prototypical
Network [23] computes average embedding vectors (proto-
types) for each class, determining the class with the closest
prototype distance for a new image. The optimization-based
methods [4,9,12,17] aim to improve model’s ability to adapt
quickly to new tasks by focusing on learning optimization
states like model initialization [4] or step sizes [12]. The
model-based methods [13, 14, 18,27] use specialized archi-
tectures [ 13, 14] and memory mechanisms [18,27] to rapidly
infer parameters. The aforementioned works primarily con-
centrate on 2D image understanding. Recently, several few-
shot learning methods for point cloud understanding have
been introduced [20,42]. For example, Sharma et al. [20] pro-

posed self-supervised pre-training tasks for few shot learning
that uses tree-based hierarchical partitioning. However, there
has been less research on few-shot 3D point cloud object
detection task.

Few-Shot Object Detection (FSOD): FSOD methods
can be broadly categorized into four groups: data aug-
mentation, transfer-learning, metric learning and meta-
learning-based methods. Data augmentation based meth-
ods [24, 33, 41] utilize prior knowledge to increase data
variance for novel categories. Transfer learning methods, as
demonstrated in [29,44], uses a simpler two-phase approach,
involving initial training on base categories and subsequent
fine-tuning on both base and novel categories with balanced
data. Further, metric learning based methods [3, 5, 10, 19]
embeds samples in a lower-dimensional space and facilitate
effective training with fewer instances by classifying test
samples based on their closest embedded training samples.
RepMet [19] uses Gaussian mixture models and an embed-
ding loss to maintain a margin between query features and
class representatives. Fan et al. [3] introduce an attention-
based RPN that enhances proposal generation and uses a
multi-relation detector for measuring similarity between Rol
features of query and support objects. Finally, meta-learning
based methods [7, 30] quickly adapt to new tasks using a
meta-learner trained on diverse tasks. MetaYOLO [7] im-
proves query features with weighting coefficients generated
during meta-learning, while Meta R-CNN [34] reweighs
only ROI features for improved detection performance. Al-
though, FSOD methodologies have gained traction in image
related tasks, their adoption in 3D point clouds has been
limited due to its unordered and irregular nature.

Self-supervised and Unsupervised methods for 3D
Point Cloud Object Detection: Recently, self-supervised
and unsupervised learning techniques are also gaining sig-
nificant attention as they reduce the reliance on large-scale
annotated datasets. For these approaches, similar to few-shot
learning, the goal is to perform well with limited annotated
samples. Some of these methods leverage unlabeled point
cloud sequences [ 1], or generate pseudo-label using predic-
tions from other collaborative units equipped with accurate
detector [38] or other modalities [31]. Unsupervised ap-
proaches like Oyster [40] uses DBSCAN clustering on Li-
DAR point clouds to initialize pseudo ground truth followed
by confidence-based forward-and-reverse tracking without
ego-motion compensation, while CPD [32] refines pseudo-
labels using commonsense prototypes to address sparsity
challenge.

3D Point Cloud Few-shot Object Detection in Indoor
Scene: As a pioneer work, Prototypical VoteNet [43] uses
episodic training to learn class-agnostic geometric proto-
types to enhance the local features of novel samples and
class-specific prototypes to refine the object features. An-
other recent work, Prototypical Variational Autoencoder [26]



learns a probabilistic multi-center Gaussian Mixture Model
(GMM)-like posterior, with each distribution centering at a
prototype. However, both these works solve the problem of
3D-FSOD in indoor scenario. To the best of our knowledge,
our paper presents the first attempt to investigate few-shot
prototypical learning in outdoor Lidar 3D object detection.
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