
A. Proof of the main statement
In this section we provide the proof that the expected

value of the variance of the scores is equivalent to the ex-
pected value of the second derivative of the noising distri-
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In the main text we use this result to gain insight about
our uncertainty estimates, which approximate the expected
value of the variance of the scores with a Monte Carlo esti-
mate i.e.
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where ”diag” is the diagonal operator, Et is the
matrix obtained by stacking the estimated scores{
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and Ēt the average of

Et.
Now we provide the proof of Eq. 1. For the sake of

simplicity, we demonstrate our statement for a scalar x

Theorem Suppose that response x is real-valued, and the
noising distribution q(x) satisfies the following regularity
conditions:

q(x) ∈ C2 (5)

i.e. q(x) is twice continuously differentiable and∫ ∞
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Then we have the main result:
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Proof To prove that LHS = RHS, we can start with the
right-hand side and show that it equals the left-hand side.

1. First, we expand the RHS:
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2. Using the chain rule:
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Then by applying the product rule for differentiation,
which states that (u · v)′ = u · v′ + v · u′ we have that
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3. Substituting this back into the integral:
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4. The second term becomes zero due to the property in
Eq. 5 as: ∫
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Finally, considering that q(x) is a probability distribu-
tion, its derivative ∂q(x)

∂x is 0 when diverging to ±∞,
hence

∂q(x)

∂x
|∞−∞ = 0 (12)

Now, going back to the first term
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5. We can multiply and divide the integrand by q(x) with-
out changing the value of the integral:
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6. This can be rewritten as:
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7. Now, we can use the following identity:
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8. Substituting this identity into the previous expression,
we get:
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9. This is exactly the definition of the left-hand side of
the original equation:
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Therefore, we have shown that the right-hand side
equals the left-hand side, proving the identity.

B. Additional figures

Figure 1. Left: generated image from DDPM trained on Ima-
genet64 with 50 steps and DDIM sampler. Right: uncertainty
map of the generated image. The uncertainty map is obtained by
summing the step-wise uncertainty of the sampling process. We
observe that most of the uncertainty is concentrated in the fore-
ground elements of the image.

Figure 2. Left: generated image from DDPM trained on Ima-
genet64 with 50 steps and DDIM sampler. Right: uncertainty map
from MC-Dropout of the generated image. The uncertainty map
is obtained by summing the step-wise uncertainty of the sampling
process. We observe that most of the uncertainty is concentrated
in the edges of the foreground elements of the image.

C. Additional tables
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Figure 3. Additional visual results of uncertainty guidance applied to Stable Diffusion. For each pair of images, the top row shows the
generated image without uncertainty guidance while the bottom row shows the same image generated with uncertainty guidance.

Figure 4. Additional visual results of uncertainty guidance applied to Stable Diffusion. For each pair of images, the top row shows the
generated image without uncertainty guidance while the bottom row shows the same image generated with uncertainty guidance.

Table 1. Comparison of the Precision and Recall between 60 000 generated images with and without the uncertainty guidance, except for
Imagenet512 for memory reasons.

Model Dataset
Precision ↑ Recall ↑

Random Ours Random Ours

ADM ImageNet 64 0.999 0.999 0.004 0.005
ADM ImageNet 128 0.951 0.951 0.371 0.380

ADM w/2-DPM ImageNet 128 0.874 0.872 0.524 0.540
U-ViT ImageNet 256 0.325 0.339 0.762 0.856
U-ViT ImageNet 512 0.791 0.793 0.431 0.451
DDPM CIFAR-10 0.685 0.685 0.00 0.00
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Figure 5. Uncertainty maps obtained from our proposed method. Coherently to our findings in the main article (Figure 3 in the main
article), we observe high uncertainty in the first phases of the sampling process with very little differences between different samples,
while most of the uncertainty related to the elements in the final image are in the last steps of the denoising process.

Figure 6. Uncertainty maps obtained from MC Dropout. While our method has high uncertainty on foreground objects, we observe that
MC-Dropout has high uncertainty only on the edges of foreground objects

Table 2. Comparison of generation time with and without uncertainty estimation in seconds of 128 samples, using the same setup described
in Section 4.1 of the main article, i.e. using M=5, 50 generation steps and compute the uncertainty between step 45 and 48.

Model Dataset
M=5

Without uncertainty estimation With uncertainty estimation

ADM ImageNet 64 40.753 52.387
ADM ImageNet 128 86.805 112.777

ADM w/2-DPM ImageNet 128 86.712 112.765
U-ViT ImageNet 256 26.272 37.058
U-ViT ImageNet 512 32.859 47.531
DDPM CIFAR-10 2.661 3.671

4



Figure 7. Hyperparameter sweep for uncertainty-guided sampling on Stable Diffusion 1.5. The top row shows the effect of varying the
uncertainty percentile threshold, while the bottom row demonstrates the impact of adjusting the uncertainty strength. In the first row,
by lowering the uncertainty percentile p we change important scene details as the sun. In the second row, by increasing the uncertainty
guidance strength λ, we are fundamentally changing the scene structure.

Figure 8. Uncertainty low quality filtering as in Table 1 of the main article, but using different number of perturbated samples for uncertainty
estimation (M). We observed slight improvements with higher, but at the cost of higher prediction times as highlighted by Table 2 and 3

Table 3. Comparison of generation time with and without uncertainty estimation in seconds of 128 samples, using the same setup described
in Section 4.1 of the main article, i.e. except for M=20, 50 generation steps and compute the uncertainty between step 45 and 48.

Model Dataset
M=20

Without uncertainty estimation With uncertainty estimation

ADM ImageNet 64 41.013 89.316
ADM ImageNet 128 86.768 190.939

ADM w/2-DPM ImageNet 128 86.750 190.871
U-ViT ImageNet 256 43.987 60.550
U-ViT ImageNet 512 53.189 74.420
DDPM CIFAR-10 2.726 6.302
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Figure 9. Additional visual results of uncertainty guidance applied to Stable Diffusion. For each pair of images, the top row shows the
generated image without uncertainty guidance while the bottom row shows the same image generated with uncertainty guidance.

Figure 10. Additional visual results of uncertainty guidance applied to Stable Diffusion. For each pair of images, the top row shows the
generated image without uncertainty guidance while the bottom row shows the same image generated with uncertainty guidance. In the
second column we observe the failure of the uncertainty guidance with human hands, as generating coherent hands is a very challenging
task for Stable Diffusion. In the third column we observe very small changes with the uncertainty guidance, as the generated image is
already of high quality. However, with hyper-parameter tuning, we can observe further improvements as demonstrated in Figure 7
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