
Supplementary material to “Uncertainty-guided Metric Learning without
Labels”

Dhanunjaya Varma Devalraju and C Chandra Sekhar
Department of Computer Science and Engineering

Indian Institute of Technology Madras, India
cs21d006@smail.iitm.ac.in, chandra@cse.iitm.ac.in

This supplementary material provides more details on
the General Pair Weighting (GPW) framework [11] used to
analyze the modified loss function and more ablation stud-
ies to understand the proposed framework further. The com-
plete information on the GPW framework and the analysis
of the vanilla multi-similarity loss are already presented in
[11]. We present the same material here for completeness
and to understand the modified loss function.

1. Modified loss function Analysis
The vanilla multi-similarity loss proposed in [11]:

LMS =
1

m

m∑
i=1

(
1

α
log(1 +

∑
l∈P+

i

e−α(Sil−λ))

+
1

β
log(1 +

∑
l∈N−

i

eβ(Sil−λ)))

(1)

The modified loss function that penalize the highly un-
certain and less confident pairs by incorporating weight
(wil):

L̂MS =
1

m

m∑
i=1

(
1

α
log(1 +

∑
l∈P+

i

(wil · e−α(Sil−λ)))

+
1

β
log(1 +

∑
l∈N−

i

(wil · eβ(Sil−λ))))

(2)

To analyse the modified loss function, we use the Gen-
eral Pair Weighting (GPW) framework proposed in [11]. In
general, given a neural network parameterized by θ and a
pair-based loss function L defined in terms of similarity ma-
trix S and labels y, the model parameters (θ) are optimized
by computing the gradient with respect to θ as given below.

∂L(S, y)
∂θ

=
∂L(S, y)

∂S

∂S

∂θ

=

m∑
i=1

m∑
j=1

∂L(S, y)
∂Sij

∂Sij

∂θ

(3)

The GPW framework [11] presents a new formulation,
whose gradient with respect to θ is determined exactly as
Eq. 3. Consider the function defined below.

F =

m∑
i=1

m∑
j=1

∂L(S, y)
∂Sij

Sij

=

m∑
i=1

 m∑
yj ̸=yi

∂L(S, y)
∂Sij

Sij +

m∑
yj=yi

∂L(S, y)
∂Sij

Sij

 (4)

Here ∂L(S,y)
∂Sij

is considered as weight term since it does not
participate in the gradient computation of F w.r.t θ [11].
Further, in [11], it was assumed that ∂L(S,y)

∂Sij
≥ 0 for a

negative pair and ∂L(S,y)
∂Sij

≤ 0 for a positive pair and the
equation in 4 is rewritten as:

F =

m∑
i=1

 m∑
yj ̸=yi

∣∣∣∣∂L(S, y)∂Sij

∣∣∣∣Sij −
m∑

yj=yi

∣∣∣∣∂L(S, y)∂Sij

∣∣∣∣Sij


(5)

A good pair-based loss function, when realized in GPW
framework, is expected to assign higher weights (

∣∣∣∂L(S,y)
∂Sij

∣∣∣)
to the informative pairs. When the vanilla multi-similarity
loss (Eq. 1) is realized in the GPW framework, the positive
and negative pair weights are obtained by computing gradi-
ent w.r.t Sij [11].

The weight of a positive pair {xi,xj} ∈ P+
i is given by:∣∣∣∣∂LMS

∂Sij

∣∣∣∣+ =
1

e−α(λ−Sij) +
∑

l∈P+
i
e−α(Sil−Sij)

(6)

and the weight of a negative pair {xi,xj} ∈ N−
i is given

by: ∣∣∣∣∂LMS

∂Sij

∣∣∣∣− =
1

eβ(λ−Sij) +
∑

l∈N−
i
eβ(Sil−Sij)

(7)

1



From Eq. 6, it can be observed that self-similarity (i.e.,
e−α(λ−Sij)) and relative similarity with other positive pairs
(i.e., e−α(Sil−Sij)) are jointly used to compute the weight of
a positive pair [11]. Similar procedures apply for comput-
ing a negative pair weight, as in Eq. 7. These pair weights
assist the loss function by assigning higher weights to the
informative pairs that violate self-similarities and relative
similarities.

Similarly, the positive and negative pairs weights for the
modified multi-similarity loss defined in Eq. 2 obtained by
computing gradient w.r.t Sij are given in Eq. 8 and Eq. 9.∣∣∣∣∣∂L̂MS

∂Sij

∣∣∣∣∣
+

=
wij

e−α(λ−Sij) +
∑

l∈P+
i
wil · e−α(Sil−Sij)

(8)∣∣∣∣∣∂L̂MS

∂Sij

∣∣∣∣∣
−

=
wij

eβ(λ−Sij) +
∑

l∈N−
i
wil · eβ(Sil−Sij)

(9)

These pair weights employ pair-wise confidence and uncer-
tainty to weigh the violation of its self-similarity and rel-
ative similarity. This aids the loss function in assigning
higher weights to the more confident and less uncertain in-
formative pairs.

2. Implementation Details
For the classification network, we use Inception-V1 [9]

pre-trained on ImageNet [8] as CNN base (fcls), a fully con-
nected layer (gcls) of length 512 and a classification layer
(hcls) of size equal to the number of clusters (C). The num-
ber clusters used for datasets CUB, Cars, and SOP is 100,
100, and 10000, respectively, as commonly done in the un-
supervised metric learning [1, 3, 5]. We added dropout to
the third and fourth inception blocks of the Inception-V1
network. To train the classification network, we use the cat-
egorical cross-entropy loss, Adam optimizer with an initial
learning rate of 1e−4, and cosine annealing [7] for learning
rate decay.

For the embedding network, for a fair comparison, we
use Inception-V1 [9] pre-trained on ImageNet [8] as CNN
base (femb) and a 128/512 dimensional embedding layer
(gemb). We use Adam optimizer with an initial learning rate
of 5e−5, 3e−5, and 1e−5 for the datasets CUB, Cars, and
SOP, respectively, with cosine annealing decay to train the
embedding network. For data augmentation, the training
images are randomly cropped to 227×227 and are horizon-
tally flipped. The testing images are resized to 256 × 256
followed by a single center crop. For all the experiments,
the values of τ , k and T are set to 3, 5 and 15.

Batch construction for training the classifier and the em-
bedding network: We use a mini-batch of size 120 and fol-
lowed the sampling strategy given in [11]. The mini-batch

0.708 0.691 0.674 0.661 0.632

0.774 0.769 0.745 0.723 0.707

0.736 0.712 0.704 0.691 0.687

0.782 0.753 0.753 0.750 0.748

Query Retrieval

Figure 1. Retrieval results along with the cosine similarity of some
randomly selected examples from the CUB [10] dataset with the
proposed framework. The green and red frames indicate the posi-
tive and negative retrieved results.

is constructed by randomly choosing a certain number of
clusters and sampling M examples from each cluster. For
all the experiments, the value of M is set to 4 for CUB and
Cars datasets and 2 for the SOP dataset.

3. More Ablation Studies

This section provides qualitative results on the CUB [10]
dataset to support our framework (UGML). We also ana-
lyze the impact of hyperparameters dropout rate, number of
stochastic forward passes (T), number of nearest neighbors,
Gaussian kernel width, and the number of mini-batches
used for neighborhood aggregation on the proposed frame-
work.

3.1. Qualitative Results

In Fig. 1, we show the retrieval results of few randomly
selected queries from the CUB [10] dataset. The results
show that most top-ranked retrieval results are from the
same category as the query example. Further, the negative
retrieved results look visually similar to the query, though
they are from different classes. This shows the effective-
ness of the proposed framework in learning discriminative
embeddings. We compare the retrieval results of UGML
against spatial assembly network (SAN) [6] for the CUB
dataset. As shown in Fig. 2, UGML retrieval results are
comparable to those of SAN.

3.2. Impact of the number of stochastic forward
passes (T)

To analyze the impact of the number of stochastic for-
ward passes (T ), we experimented with different values of
T by fixing the dropout probability at 0.2. As shown in
Fig. 3, T has very little to no influence on the performance
of UGML.



Query Top-5 Retrieval Results by SANQuery Top-5 Retrieval Results by UGML

Figure 2. Comparison of UGML retrieval results with SAN [6] in CUB [10] dataset. The green and red boundaries indicate the positive
and negative retrieved results.

5 10 15
Stochastic forward passes (T)

56

58

Re
ca

ll@
1 
(%

)

58.2 58.5 58.8

5 10 15
Stochastic forward passes (T)

67

69

71

Re
ca

ll@
2 
(%

) 70.5 70.8 70.7

5 10 15
Stochastic forward passes (T)

77

79

81

Re
ca

ll@
4 
(%

)

80.2
80.7 81.0

Figure 3. Impact of the number of stochastic forward passes (T )
on the performance of UGML with the CUB [10] dataset.

0.2 0.3 0.4 0.5
Dropout Probability

56

58

Re
ca
ll@

1 
(%

) 58.8 58.8 58.6 58.4

0.2 0.3 0.4 0.5
Dropout Probability

67

69

71

Re
ca
ll@

2 
(%

) 70.7 70.5 70.2 70.2

0.2 0.3 0.4 0.5
Dropout Probability

77

79

81

Re
ca
ll@

4 
(%

) 81.0 80.6 80.2 80.5

Figure 4. Impact of dropout on the performance of UGML with
CUB [10] dataset.

3.3. Impact of the dropout

Fig. 4 illustrates the impact of dropout probability on
the performance of the UGML using SCDA features on the
CUB dataset. All the results are obtained by considering
15 stochastic forward passes, i.e., (T = 15). The proposed
framework achieves the best results with a dropout proba-
bility of 0.2. Further, there is a drop in the performance of
UGML for higher values of dropout probability.

3.4. Impact of the number of nearest neighbors (k)
and Gaussian kernel width (τ )

The number of nearest neighbors (k) and Gaussian ker-
nel width (τ ) are hyperparameters used in neighborhood ag-
gregation. To analyze the impact of k, τ on the performance
of UGML, we experimented with various choices for k and
τ on the CUB dataset with SCDA features. From Fig. 5,
UGML performs reasonably well with various choices for
k and τ while achieving best when k and τ are set to 5 and
3, respectively.

4 5 6 7
Number of Nearest Neighbors k

58.0

58.5

Re
ca

ll@
1 

(%
)

58.2

58.8

58.4

58.7

2 2.5 3 3.5 4
Gaussian kernel width τ

58.0

58.5
58.6 58.7 58.8

58.6 58.5

Figure 5. Impact of the number of nearest neighbors k and Gaus-
sian kernel width τ on the performance of UGML with CUB
dataset.

00 10 20 30 40 50 60 70 80 90 100
Number of mini-batches (clusters)

57

58

59

Re
ca

ll@
1 

(%
) 59.1

58.3
58.8 58.7

58.4
58.7 58.7

58.3
58.6 58.6

57.9

Figure 6. Impact of the number of mini-batches (clusters) used for
neighborhood aggregation on the performance of UGML.

3.5. Impact of the number of mini-batches used for
neighborhood aggregation

As mentioned in the main paper, using the entire dataset
is the ideal choice for neighborhood aggregation to refine
the pseudo-labels. However, using the full dataset does not
scale for large datasets like SOP. To overcome this, we have
proposed a new approach to construct a mini-batch by clus-
tering classes that are close to each other in the feature space
of the classification model. To analyze the influence of the
number of clusters (or mini-batches) used on the perfor-
mance of the UGML, we experimented on the CUB dataset
with various choices for the hyperparameter number of clus-
ters (or mini-batches). From Fig. 6, as expected, the best
result is achieved when the entire dataset is used for neigh-
borhood aggregation (orange bar). Further, the best result
with the proposed batch construction with 20 mini-batches



120
(49)

250
(24)

500
(12)

1000
(6)

2000
(3)

3000
(2)

4000
(2)

5000
(2)

5864
(1)

Batch size 
 (Number of mini-batches)

51

54

57

60

Re
ca

ll@
1 
(%

)

52.9

54.8

56.9 57.4
58.4 58.3 58.6 58.4 59.1

Figure 7. Impact of random sampling with various batch sizes on
the performance of UGML.

(green bar) is very close to the result with the full dataset
(orange bar). This shows the effectiveness of the proposed
batch construction method, as it facilitates scalability while
maintaining performance. Also, the performance variation
with different choices of the number of mini-batches is min-
imal, showing the robustness of the UGML.

To further assess the importance of our proposed batch
construction strategy, we evaluated UGML using random
sampling for batch construction. Given N training exam-
ples and batch size q, we form p = ⌈N

q ⌉ mini-batches.
The first p − 1 batches contain q randomly sampled ex-
amples, while the remaining examples form the last batch.
In Fig. 7, the orange bar represents results with neighbor-
hood aggregation using the full dataset, while the red bar
shows the best result with random sampling. As shown
in Fig. 7, UGML performs poorly with small batch sizes
when using random sampling. Achieving results compara-
ble to those obtained with our proposed batch construction
method requires significantly larger batch sizes (≥ 2000 ex-
amples per mini-batch) with random sampling, which we
are trying to avoid. In other words, random sampling re-
quires fewer mini-batches (≤ 3) with a larger number of
examples per batch to match the performance of our pro-
posed batch construction strategy, which achieves better re-
sults using more mini-batches (20) with fewer examples per
batch (see Fig. 6). This demonstrates the efficiency of the
proposed batch construction strategy for neighborhood ag-
gregation, as it optimizes memory usage while maintaining
performance.

3.6. Impact of different embedding sizes:

The results on the CUB dataset using SCDA features
with different embedding dimensions are given in Table 1.
The results show that performance improves as the embed-
ding dimension grows from 64 to 1024.

3.7. Performance with different network architec-
tures as a base

In the paper, the performance of the proposed method
(UGML) is evaluated using Inception-V1 [9] as the base.
However, different network architectures can be used as a

Table 1. Performance on CUB dataset with Inception-V1 back-
bone for different embedding sizes.

CUB
Embedding Size R@1 R@2 R@4
64 51.8 64.8 75.6
128 55.7 67.8 77.8
256 58.0 69.4 79.7
512 58.8 70.7 81.0
1024 59.8 71.2 81.4

Table 2. Performance on CUB dataset using Inception-V2 (Incep-
tion with BatchNorm) [2] as the base.

CUB
Method R@1 R@2 R@4
UDML-SS [1] 63.7 75.0 83.8
STML [4] 68.0 78.8 86.4
UGML(SCDA) 65.3 76.5 84.7

base for UGML. To demonstrate this, we have evaluated
the UGML using Inception-V2 [2] as the base, and the re-
sults on the CUB dataset using SCDA features are given in
Table 2. The results show that the Recall@1 of the UGML
is improved by 6.5% compared to 58.8% with Inception-V1
as the base.

References
[1] Xuefei Cao, Bor-Chun Chen, and Ser-Nam Lim. Unsuper-

vised deep metric learning via auxiliary rotation loss. arXiv
preprint arXiv:1911.07072, 2019. 2, 4

[2] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37, pages 448–456.
PMLR, 2015. 4

[3] Shichao Kan, Yigang Cen, Yang Li, Vladimir Mladenovic,
and Zhihai He. Relative order analysis and optimization
for unsupervised deep metric learning. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13994–14003, 2021. 2

[4] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Self-taught metric learning without labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7431–7441, 2022. 4

[5] Yang Li, Shichao Kan, and Zhihai He. Unsupervised deep
metric learning with transformed attention consistency and
contrastive clustering loss. In European Conference on Com-
puter Vision, pages 141–157. Springer, 2020. 2

[6] Yang Li, Shichao Kan, Jianhe Yuan, Wenming Cao, and Zhi-
hai He. Spatial assembly networks for image representa-
tion learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13876–
13885, 2021. 2, 3

[7] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 2

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,



Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115:211–
252, 2015. 2

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.
2, 4

[10] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 2, 3

[11] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong,
and Matthew R Scott. Multi-similarity loss with general
pair weighting for deep metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5022–5030, 2019. 1, 2


	. Modified loss function Analysis
	. Implementation Details
	. More Ablation Studies
	. Qualitative Results
	. Impact of the number of stochastic forward passes (T)
	. Impact of the dropout
	. Impact of the number of nearest neighbors (k) and Gaussian kernel width ()
	. Impact of the number of mini-batches used for neighborhood aggregation
	. Impact of different embedding sizes:
	. Performance with different network architectures as a base


