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A. Overview

This document provides supplementary material for the
dual robust information fusion attention DRIFA mech-
anism integrated within a deep neural network named
DRIFA-Net. This approach adopts a multimodal fusion
learning (MFL) strategy and incorporates two attention
mechanisms: a multi-branch fusion attention (MFA) mod-
ule to learn enhanced diverse local representations for each
modality, and a multimodal information fusion attention
(MIFA) module to enhance multimodal representations.
These modules enhance multimodal representation learn-
ing, as evidenced by improved performance in the results.

Section B presents the pseudo-codes in Algorithms 1(a)-
1(d), outlining the DRIFA-Net approach.

Section C explains the optimization of all learnable
weights, including ωd, ωl, and ωc for the MFA module and
ωdm

, ωlm , and ωcm for the MIFA module, using a back-
propagation strategy.

Section D details the datasets used in this study, while
Section E presents additional experimental results, includ-
ing the confusion matrix and training-validation loss and
accuracy curves for our model trained on the HAM10000
(D1) [9] and SIPaKMeD (D2) [8] datasets.

Section F provides a qualitative analysis to evaluate the
efficacy of our proposed method using the Grad-CAM tech-
nique. This visualization highlights the regions of highest
importance in the D1 [9] and D3 (Nickparvar MRI)
[7] datasets, as shown in Fig. 3. The attention maps vali-
date our model’s decisions by emphasizing areas crucial to
prediction scores across these datasets in this study.

B. Brief Explanation for DRIFA-Net as Algo-
rithm 1

In this section, we exhibit Algorithm 1, detailing each of
the most important modules of DRIFA-Net.

• Algorithm 1(a): This algorithm describes the resid-
ual robust attention (RRA) block, which enables en-
hanced representation learning. Detailed steps and op-
erations of this block are elaborated in Section 3.2.1 of
the main paper.

• Algorithm 1(b): This algorithm outlines the MFA
module, designed for diverse representation learning
of local information. The MFA module employs multi-
ple branches of attention mechanisms to capture intri-
cate details across different modalities.

• Algorithm 1(c): This algorithm outlines the MIFA
module (see Section 3.2.2 of the main paper), which
is designed to learn enhanced multimodal representa-
tions across various modalities, thereby boosting the
performance of the learning network.

• Algorithm 1(d): This algorithm covers the multitask
learning (MTL)module (ref. Section 3.2.3 of the main
paper), facilitating the classification of multiple dis-
ease tasks. The MTL module leverages shared repre-
sentations to perform classification tasks across differ-
ent disease categories efficiently.

Each algorithm is integral to the functioning of
DRIFA-Net, contributing to its robust performance, fea-
ture learning capabilities, and effectiveness of the multi-
modal medical image classification tasks. Detailed pseudo-
code and step-by-step operations for these modules are pro-
vided to offer a comprehensive understanding of their im-
plementation and integration within the network.

C. Optimized Learnable Weights using Back-
propagation

In this study, for the MFA module, all learnable
weights—such as ωd, ωl, and ωc—are used to adjust the im-
portance of each learned information along with each chan-
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Figure 1. Visualization of training and validation accuracy and loss curves per epoch while training our proposed DRIFA-Net models
with the D1 [9] and D2 [8] datasets. (a) and (b) show accuracy and corresponding loss for the D1 dataset [9], while (c) and (d) depict
accuracy and corresponding loss for the D2 dataset [8].

Figure 2. Confusion matrices illustrating the performance of our proposed DRIFA-Net, for (left) skin cancer classification in the D1
dataset [9], and (right) cervical cancer classification in the D2 dataset [8].
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Figure 3. Visualization of important regions highlighted using red or blue rectangular boxes by our proposed DRIFA-Net and four
existing methods [2–5] using the Grad-CAM technique on the D1 [9] and D3 [7] datasets. Figure (a) and (g) display the original images,
while (b) and (h) present results for Gloria [5], (c) and (i) for MTF with MA [2], (d) and (j) for CAF [4], (e) and (k) for MTTU-Net [3],
and (f) and (l) for our DRIFA-Net.

nel during training. This process helps refine both the di-
verse local information d̂ and the channel-wise local infor-
mation l̂. These learnable weights are optimized using a
back-propagation strategy.

Specifically, we compute the gradient of the loss, de-
noted as ∇∂MTL (from Eq. 9 of the main paper), with
respect to ωd, ωl, and ωc, as specified below:

∇ωd
∂MTL = (∇a∂MTL ×∇ωd

a) (1)

∇ωl
∂MTL = (∇a∂MTL ×∇ωl

a) (2)

where a represents learned attention maps from MFA
module, ∇ωda and ∇ωla are back-propagation of the gra-
dients. From Eq. 4 of the main paper, we can derive that
∇ωd

a = a × (1 − a) and ∇ωl
a = a × (1 − a). Now, we

can compute the gradient loss with respect to learnable ωc

parameter as follows.

∇ωc
∂MTL = ζ ×∇a∂MTL × x× (a× (1− a)) (3)

where ∇ωc
∂MTL is the back-propagation of the gradi-

ent, and ζ is the constant in back-propagation.
Throughout the optimization process, our proposed ap-

proach iteratively updates the parameters. ωd, ωl, and ωc

based on their computed gradients, aiming to minimize the
overall loss of our proposed DRIFA-Net model. These
learnable parameters undergo updates at step t+1 for layer
u as follows.

ωt+1
d = ωt

d − ur ×∇ωd
∂t
MTL,

ωt+1
l = ωt

l − ur ×∇ωl
∂t
MTL,

ωt+1
c = ωt

c − ur ×∇ωc
∂t
MTL

(4)

Similarly, all employed learnable weights—such as ωdm
,

ωlm , and ωcm for the MIFA module—are optimized using
a back-propagation strategy, as outlined in Eqs. 5 and 8 of
the main paper, as follows:

ωt+1
dm

= ωt
dm
− umr

×∇ωdm
∂t
MTL,

ωt+1
lm

= ωt
lm − umr

×∇ωlm
∂t
MTL,

ωt+1
cm = ωt

cm − umr
×∇ωc

∂t
MTL

(5)

where layer um represents layers for m heterogeneous
modalities.

D. Dataset

Our experiments utilized five medical imaging datasets:
HAM10000 [9], SIPaKMeD [8], Nickparvar MRI [7],
IQ-OTHNCCD lung cancer [1], and BraTS2020 [6]
(denoted as D1, D2, D3, D4, and D5 respectively).
HAM10000 comprises 10,015 images across seven classes:
Actinic keratoses and intraepithelial carcinoma/Bowen’s
disease (akiec), basal cell carcinoma (bcc), be-
nign keratosis-like lesions (solar lentigines/seborrheic ker-
atoses and lichen-planus like keratoses, bkl), dermatofi-
broma (df), melanoma (mel), melanocytic nevi (nv),
and vascular lesions (angiomas, angiokeratomas, pyo-
genic granulomas and hemorrhage, vasc). SIPaKMeD
includes 4,049 images distributed over five classes:
Dyskeratotic, Koilocytotic, Metaplastic,
Parabasal, and Superficial-Intermediate.
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Algorithm 1 DRIFA-Net(X)
1: Input: Input features, [x1, x2, . . . , xm] ∈ X; where

[x1, x2, . . . , xm] ∈ RH×W×C

2: Output: Enhanced learned multimodal features, XS

3: Perform multitask operation based on XS

4: Procedure:
5: /* For the development of the DRIFA mechanism, in-

tegrated with neural networks such as ResNet18, re-
ferred to as DRIFA-Net. */

6: if phase == TMFL then
7: for each modality m do
8: for each filter size in {64, 128, 256, 512} do
9: if filter size == 64 then

10: x← Use a convolution block
11: end if
12: x′ ← Call RRA(x) block
13: if filter size in {128, 256} then
14: x′ ← Use dropout (for no UQ) else use MCD
15: end if
16: x′ ← Call MFA(x′) module for each m
17: end for
18: end for
19: XS ← Call MIFA([x′

1, x
′
2, . . . , x

′
m]) module for all

m
20: Call MTL(XS , yt) module to classify multiple dis-

eases based on each m
21: else
22: Generate n ensemble learning models
23: Perform Monte Carlo equation to estimate the uncer-

tainty of the DRIFA-Net as per equation 10
24: end if

The brain tumor dataset [7] combines images from
Figshare, SARTAJ, and BrH35, comprising 7,023 MRI
scans categorized into Glioma (324 test and 1,297 train-
ing images, labeled as 0), Meningioma (329 test and
1,316 training images, labeled as 1), No Tumor (400 test
and 1,600 training images, labeled as 2), and Pituitary
(351 test and 1,406 training images, labeled as 3). The
IQ-OTHNCCD lung cancer dataset [1] consists of 1,098
images across three classes: normal, benign, and
malignant.

Algorithm 1(a) RRA(x)

1: for each layer do
2: x← Use a convolution layer
3: x′ ← Call MFA() module
4: Use skip connection strategy
5: end for
6: return x′

Data augmentation techniques, including rotation and

transformation, were applied to ensure consistent sample
sizes for training across modalities. All images were stan-
dardized to 128×128×3 pixels, with an 80% training, 10%
validation, and 10% testing split.

E. Experimental Results
In this section, we present the generated confusion ma-

trices along with training-validation results to demonstrate
the performance of our proposed model during the training,
validation, and testing stages. Figs. 1 and 2 illustrate these
results for the D1 [9] and D2 [8] datasets, respectively.

F. Impact of Qualitative Analysis
To facilitate qualitative analysis and compare the effec-

tiveness of our proposed method with other approaches, we
show results using Grad-CAM technique. Grad-CAM vi-
sualizations highlighted regions of highest importance in
the D1 [9] and D3 [7] datasets, as depicted in Fig. 3. These
attention maps validate the decisions made by our proposed
DRIFA-Net by emphasizing critical areas for prediction
scores across the D1 and D3 datasets [7, 9], providing in-
sights into the model’s decision-making process.

Algorithm 1(b) MFA(x)

1: Procedure: /* For developing Multi-branch fusion at-
tention MFA module */

2: HIFA(x): /* HIFA module: To learn diverse enhanced
local information d̂ */

3: for all p do
4: lp ← Follow Eq. 1 of the main paper;
5: end for

/* Use hierarchical fusion strategy to fuse all learned
local information for each ith index */

6: for all lp do
7: d̂ = f(∀lp [φ{ϕ(lp, lp+1), ϕ(lp+2, lp+3)}]);
8: end for
9: CLIA(x): /* CLIA module: To learn channel-wise lo-

cal information l̂ */
10: for each q do
11: l̂← Follow Eq. 3 of the main paper;
12: end for

/* Modulation Strategy: To learn local attention map to
highlight important features while suppressing less sig-
nificant ones followed by fusion with sigmoid to learn
both learned versions of capturing local information */
/* use learnable weights ωd and ωl to enhance diverse
local information */

13: a = σ((d̂× ωd)⊕ (l̂ × ωl))
/* To learn enhanced local representation learning us-
ing MFA */

14: x′ = x× a× ωc

15: return x′
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Algorithm 1(c) MIFA([x′
1, x

′
2, . . . , x

′
m])

1: Procedure: /* For developing Multimodal Information
Fusion Attention (MIFA) module */

2: MGIFA([x′
1, x

′
2, . . . , x

′
m]): /* MGIFAmodule: To learn

diverse enhanced multimodal global information g′ (re-
fer to Eq. 6 of the main paper) */

3: for each pool ∈ {max, avg,min} do
4: g′ = ϕ (fpool (

∑m
i=1 Gpool,i(X)))

5: end for
6: MLIFA([x′

1, x
′
2, . . . , x

′
m]): /* MLIFAmodule: To learn

diverse enhanced multimodal local information l′ (refer
to Eq. 7 fo the main paper) */

7: for each pool ∈ {max, avg,min} do
8: l′ = ϕ (fpool (

∑m
i=1 Lpool,i(X)))

9: end for
/* Modulation Strategy: To learn global-local atten-
tion map using modulation strategy to highlight impor-
tant features while suppressing less significant ones fol-
lowed by fusion with sigmoid to learn both information
*/
/* use learnable weights ωdm

and ωlm to enhance di-
verse global-local information */

10: A = σ((g′ ⊗ ωdm
) + (l′ ⊗ ωlm))

/* To learn enhanced multimodal representation learn-
ing using MIFA module */

11: XS = X ×A× ωcm

12: return XS

Algorithm 1(d) MTL(XS , yt)

1: Procedure: /* For designing multitask learning */
2: for each task t do
3: θ(XS , yt) = [x1, . . . , xm]→ [y1, . . . , yt], and ωm

t

4: ∂MTL =
∑

t ω
m
t × ∂m

t (θ(XS , yt))
5: end for
6: return ∂MTL
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