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1. Multi-view Framework
We described our multi-view framework in the main

manuscript, Section 4.1. To summarize, for each baseline,
we initialize three separate encoders for each view (right,
front, left) to extract the view-wise visual features. The la-
tent features of the three views are concatenated to effec-
tively integrate multi-view information and passed through
a Multi-layer Perceptron network for sign language classifi-
cation. Through this simple design, the model is capable of
learning visual features from different views and combin-
ing them to predict the gloss logits. Figure 1 illustrates our
multi-view SLR framework.

2. Experiment Reproducbility
In this section, we describe the experimental setup, in-

cluding the construction of our 3-view architecture for sign
language recognition, hyper-parameter configurations, pre-
training strategies, and other relevant details. This section
provides a comprehensive overview of the implementation.

2.1. Environment

We train all of the models using a system containing 4
GeForce RTX 3080 GPUs, 125 GB of RAM and 48 Intel
Xeon Silver 4214 CPUs with a frequency of 3.0GHz. The
Deep Learning sign language recognition models are imple-
mented and trained with Python 3.7.11, Torch version 2.0.0,
and TorchVision version 0.15.0. Video reading and process-
ing are handled with Pillow version 9.0.1, and OpenCV ver-
sion 4.10.0. We utilize mmPose version 1.3.1 and mmCV
version 2.1.0 to extract pose key points for the VTNPF [1]
baseline.

2.2. Hyper-parameters

For each base model and its corresponding single-view
and three-view, Adam serves as the main optimizer. Batch
sizes are adjusted between 2 and 8 based on available
VRAM. The maximum number of training epochs to 100

(total epoch). However, the training process typically stops
before reaching this limit due to the use of early stopping.
Specifically, we apply early stopping with a patience factor
of 15 epochs and a delta of 0, comparing improvement on
the validation accuracy for each epoch. The training process
is halted if no improvement is observed after 15 consecutive
epochs.

We employ Grid Search to determine the optimal hy-
perparameters for both single-view and three-view config-
urations. For instance, in the case of I3D [1] 1-view, the
learning rate was set to 1 × 10−4 with a decay factor of
0.8 applied every 10 epochs, and the weight decay for the
three-view variant was increased to 1×10−4. Similarly, for
MViT [2], the learning rate was set to 1× 10−4, decreasing
by 0.5 every 5 epochs for 1-view, with the three-view con-
figuration having a longer step size of 10 epochs. Detailed
hyper-parameters for all models, including three-view vari-
ants, are summarized in Table 1.

2.3. Pre-training

Regarding weight initialization, before training the
single-view models, we pre-train the model on the large
and diverse AUTSL [4] sign language dataset. This pre-
training step is essential as it allows the model to familiarize
itself with a wide range of sign language gestures, ensur-
ing the learning of both low-level and high-level features.
Low-level features capture basic hand movements and ori-
entations, while high-level features represent more complex
patterns and contextual nuances.

After pre-training on AUTSL, the checkpoint is then
used to fine-tune the model on the front-view of our Multi-
VSL dataset. Subsequently, the weights from the single-
view Multi-VSL model are reused to fine-tune for training
on the three-view recognition task.
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Figure 1. Our Multi-view Sign Language Recognition Framework. Each view data is handled by a separate encoder, and the latent
features of three-views are combined through vector concatenation and passed through a Multilayer Perceptron for prediction.

Table 1. Learning rates, gamma values, step size, and weight decay settings for different models. The table shows the configurations
used for both single-view and three-view variants.

Model Learning rate Gamma Step size Weight decay

1 view 3 view 1 view 3 view 1 view 3 view 1 view 3 view

I3D [7] 1× 10−4 1× 10−5 0.8 0.8 10 10 1× 10−4 1× 10−4

MViT [2] 1× 10−4 1× 10−5 0.5 0.7 5 10 1× 10−4 1× 10−4

Swin. [3] 1× 10−4 5× 10−5 0.5 0.5 5 5 2× 10−2 2× 10−2

VTNPF [1] 1× 10−4 1× 10−5 0.8 0.8 10 10 1× 10−4 1× 10−3

3. Gloss annotation tool
3.1. Purpose of the Annotation Tool

Our annotation tool streamlines the labeling of video
data for various applications, such as machine learning and
content analysis. It divides videos into segments, labeling
each with start and end times, a corresponding word (repre-
sented by a unique ID), and an order action to account for
different visual representations. The tool’s flexibility allows
it to handle words appearing in multiple contexts and is ap-
plicable across various domains requiring video annotation.

3.2. Key Features and Functions

The annotation tool offers a range of features designed
to support video data labeling efficiently:

• Labeling Functionality: Users can label video seg-
ments with start-time, end-time, the ID of a mapped
word, and an order action, which enables the represen-
tation of different ways to express the same word.

• Data Types Supported: The tool supports video data
exclusively.

• Collaborative Work: The tool is designed for col-
laboration, allowing multiple users to label video seg-
ments simultaneously in real time.

• CSV Integration: Users can upload data from CSV
files, which allows for easier bulk editing and import-
ing of labeling data. Users can also specify the start
time of labeling in seconds and set the start index from
which labeling begins.

• Data Export: Labeled data can be downloaded for
further use, such as in machine learning models or
other analytical purposes.

In addition to these features, the tool is highly customiz-
able, providing flexibility in the labeling process. The tool
is capable of handling large datasets, making it suitable for
video projects that require detailed annotations across mul-
tiple segments.

2
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2

3

Figure 2. The graphical user interface (GUI) of our annotation tool, where left figure is the annotation interface and right figure provides
interface for the list of videos with it corresponding status. In the left figure, 1 is the reference video provided for annotators, offering an
example to guide the annotation process. 2 is the dataset video, from which annotators identify and mark the timestamps corresponding to
each gloss ID based on the reference video. 3 is the annotation table, which records the labeled timestamps and associated gloss information
for each video.

3.3. User Interaction

The tool operates through a highly usable graphical user
interface (GUI), which is accessible via any modern web
browser. This design allows users to connect to the sys-
tem from anywhere, ensuring low latency and high usabil-
ity, even in collaborative environments. Moreover, our in-
terface makes the labeling process easier, as it gives a refer-
ence video for each gloss, and an annotation table for double
check (see Figure 2).

The system is optimized for team collaboration, enabling
multiple users to work together in real-time. Each user can
see updates made by others, which enhances the efficiency
of the labeling process, especially when dealing with large
datasets.

3.4. Current Solution and Deployment

The annotation tool is currently deployed on our custom
server infrastructure using MinIO for data storage. This de-
ployment is designed to be cost-effective, eliminating the
need to rely on external cloud services like AWS S3. By
hosting MinIO ourselves, we avoid the increasing costs as-
sociated with scaling up data storage in the cloud, especially
for large datasets that can reach terabytes in size.

Cost-Saving Example: For instance, using AWS S3 to
store 1TB of video data could cost hundreds of dollars per
month, depending on data transfer and retrieval frequency.
By contrast, deploying MinIO on a local server incurs only
the initial server and maintenance costs, significantly reduc-
ing ongoing expenses. This approach allows us to scale
storage to meet future data needs without incurring high
cloud service costs.

4. Dataset samples
This section provides some examples from our dataset to

demonstrate that our Multi-VSL dataset was built in an in-

door environment, with a diverse range of people, glosses,
backgrounds, and, especially, recorded from three views.
The images are cropped by detecting human poses with
YoloV9 [6] to mitigate noisy background signals. Human
faces are detected by a YoloV9 model [5] and blurred with
Gaussian filters to preserve the signers’ privacy. (See Fig-
ures 3, 4, 5, 6)
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signer #3 
gloss #1 (grass)

signer #20
gloss #3 (grandparent)

Figure 3. Multi-view Sample of Gloss #1 and #3, with their corresponding English meanings
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signer #5 
gloss #134 (chance)

signer #28 
gloss #183 (unfamiliar)

Figure 4. Multi-view Sample of Gloss #134 and #183, with their corresponding English meanings
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signer #18
gloss #199 (brush one's teeth)

signer #10 
gloss #359 (pass the ball)

Figure 5. Multi-view Sample of Gloss #199 and #359, with their corresponding English meanings
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signer #12 
gloss #519 (yam)

signer #27 
gloss #700 (mane of hair)

Figure 6. Multi-view Sample of Gloss #519 and #700, with their corresponding English meanings
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