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Qualitative denoising results of real data for various band
combinations are presented in Fig. 1, where it is shown that
our proposed method surpasses existing methods in terms
of visual quality. We also perform experiments using the
Urban [4] and RealHSI datasets [9]. The visual results
is shown in Fig. 4. It’s clear that VISIONARY delivers
cleaner and sharper images.

For a thorough evaluation, we compared HSI classifi-
cation accuracy before and after denoising using various
methods Fig. 2 shows SVM classification results for the
IP and PU datasets and Fig. 5 shows SVM classification re-
sults for the Urban dataset, while Table 1 provides the quan-
titative results of the same dataset. Post-denoising, our pro-
posed method surpasses existing methods in terms of visual
quality, indicating superior denoising performance. Addi-
tionally, Fig. 3 provides spectral profiles to assess further
the potency of different denoising methods in the spectral
domain, showing that our method outperforms all others in
spectral performance and closely matches the ground truth.

1. Computational Efficiency

We give an overview of the computational efficiency of
our proposed method in terms of GFLOPs, number of pa-
rameters, and inference/training time. The GFLOP for VI-
SIONARY is 144.47, which is relatively lesser than the
GFLOPS of state-of-the-art methods like SERT with values
of 1018.9 and comparable to UNFOLD’s value of 141.5.
Additionally, the parameter count is relatively comparable
but gives better results as a trade-off. Moreover, the average
inference time of VISIONARY is 5.1 seconds, which is bet-
ter than UNFOLD [9] and relatively comparable to SERT
[17], which have average inference times of 5.8 and 3.2 sec-
onds, respectively. The training time of VISIONARY is 15
hours.
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Figure 1. Real denoised results on IP and PU datasets for bands (3, 103, 203) and (5, 13, 95), respectively.
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Figure 2. Classification outcomes for IP and PU datasets.
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Figure 3. Spectral curves of the ICVL dataset at coordinates (110, 110) under Gaussian noise (σ = 50).

Table 1. Classification outcomes on Urban Dataset Pre- and Post-HSI Denoising

Dataset Index Noisy [1] [3] [8] [7] [5] [6] [2] OURS

Urban OA 86.11 91.27 92.33 92.76 92.99 94.17 94.91 95.13 96.02
Kappa 0.8385 0.8847 0.8909 0.9088 0.9086 0.9189 0.9267 0.9405 0.9528
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Figure 4. Visual outcomes for real-world noise reduction on the Urban [4] and Real [9] Datasets.
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Figure 5. Classification outcomes for Urban [4] dataset.
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