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1. Computing the Shapley value for the function
avgmin.

Let us assume that each player i has an intrinsic value xi.
The characteristic function is: v(C) = avgmini∈C xi. Or,
we can write it as follows:

v(C) =

∑
i∈C mini∈C xi

|C|

. Without the loss of generality, let us assume that the players
are indexed according to increasing xi, i.e., xi <= xj for
i < j. Here n is the number of all the players in the game.

Theorem 1 Let each i ∈ N have an intrinsic value
xi and let the characteristic function be defined as fol-
lows v(C) = avgmini∈C xi. Then the Shapley value is:
SVi(v) = xi(n− 1)! +

∑n
h=2

∑n−h+1
k=1 − k

h

(
n−k−1
h−2

)
(h− 2)!(n− h)!.

2. The Airport Problem
In the Airport Problem, we are given a finite set of agents

[n] = {1, . . . n}, and a non-negative cost function C : [n] →
R+ ∪ {0} satisfying the condition: i ≤ j ⇒ C(i) ≤ C(j)
for all i, j ∈ [n]. We can associate a particular type of a
cooperative game, namely the so-called Airport Game, with
an Airport Problem. Given the Airport Problem ([n], C) we
define the coalition value function c : P([n]) → R+∪{0} of
the Airport Game as follows: c(S) = maxi∈S C(i), where
S ∈ P([n]) is an arbitrary subset of the set of agents [n],
i.e., an arbitrary coalition. Since the cost of every singleton
coalition c({i}) is equal to the cost C(i), not only an airport
problem generates an airport game, but we can also recover
an airport problem from every airport game, so the two
objects can be treated as equivalent.

In our framework, the players of an airport game corre-
spond to particular models in MP , and their costs C are
simply equal to their performances on particular data points.
Therefore, for each single data point, we can compute the
Shapley (Banzhaf) Values of all coalitions of models from
MP , and then compute the coalition function as an average
of the above over all l data points considered.

3. Banzhaf Index for the Airport Problem

In this section we present a polynomial-time algorithm for
computing the Banzhaf Index for the Airport Problem, which,
by the same argument as the once concerning the Shapley
Value gives us a polynomial time algorithm for determining
the coalition function in our model, as it is an average of
coalition functions of l equivalent airport problems. To
clarify the measure of complexity, when we say that it is
f(n)-time computable to find the Banzhaf Values for the
Airport Problem, we mean that there exists an algorithm
such that on the input ([n], C), it outputs the Banzhaf Values
of all players {1, . . . , n} in time f(n). Having said that, we
may proceed to the main theorem and its proof.

Theorem 2 There exists a polynomial time algorithm for
computing the Banzhaf Values of all agents involved in the
Airport Problem ([n], C).

Proof 1 Let ([n], C) be an arbitrary instance of an airport
problem, and let C(1) ≤ . . . ≤ C(n) be the costs of the
agents taking part in the game.

For agent i = 1 there is exactly one way in which it can
have a non-zero contribution to the value of any coalition,
namely when a singleton coalition {i} is being formed out
of the empty coalition ∅. This is easy to observe, as by the
structure of the cost function C and by the definition of the
coalition value function c this is the only possibility. Thus,
trivially, there is also only one possible value of a marginal
contribution of player 1 to any coalition. For every agent
k ≥ 2 in the set of players [n] there are at most as many
possible marginal contribution values as there are differences
C(k)−C(i) for i < k in [n], i.e., exactly k− 1 values, if all
C(i)’s for i < k are pairwise different, that is when the order
of numbers C(1) ≤ . . . ≤ C(k) is strict. Computation of the
Banzhaf values of players in the airport game will be feasible
in polynomial time thanks to the fact that by the definition
of c(S) as the maximum C(i) over all i ∈ S and that by
the ordering of players w.r.t. the C values, we are able to
directly compute the number of coalitions S to which player
k makes a non-trivial contribution and we know what this
contribution will exactly be for each such coalition. To see
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Figure 1. Some positive detection results of the SCDL where the other baseline solutions fail in the detection.

that, fix player k ≥ 2. This agent can make the contribution
C(k) − C(i) for i < k for those coalitions S, for which
max(S) = i. The number of such coalitions is exactly the
number of subsets of {1, . . . , i− 1}, that is 2i−1. Therefore
for each i < k, the marginal contribution of the player
k, that is, C(k) − C(i) counts exactly 2i−1 times, if the
ordering of C values is strict, which we can assume without
generality. For instance, let k = 7, and suppose i = 4.
To compute the Banzhaf index of player k, it is necessary
(but not sufficient) to compute the number of coalitions to
which player k will make the marginal contribution equal to
C(7)−C(4). Since C(1) ≤ C(2) ≤ C(3) ≤ C(4) ≤ C(5),
we need to see in how many coalitions C(4) is the maximum
cost value. There are exactly 23 such coalitions (all the
coalitions corresponding to subsets of the set {1, 2, 3}) so
the value C(7)− C(4) enters the Banzhaf index of player 7
with the coefficient 23. Therefore, for each agent k ∈ [n], its
Banzhaf index is equal to:

β(k) =
1

2n−1

[
C(k) +

k−1∑
i=1

(
2i−1(C(k)− C(i))

)]
.

For k = 1, the sum in the bracket is simply empty, and only
the cost C(1) is counted into the computation of 1’s Banzhaf
index, which equals C(1)

2n−1 . Thus, in order to compute the
Banzhaf power indices of all agents k ∈ [n] we need to
compute at most a sum of k − 1 differential values C(k)−
C(i) for each k ∈ [n] which requires the total of:

n∑
k=1

(
k−1∑
i=1

i

)
=

n∑
k=1

k(k − 1)

2
=

n(n− 1)(n+ 1)

6
= O(n3)

operations.

4. More Qualitative Results
More experiments have been carried for defect detec-

tion using MVTec AD [1]. The MVTec AD challenge for
anomaly detection is caused by a variety of cases of irreg-
ular defects. This dataset was introduced as a benchmark
dataset for industrial anomaly detection. It contains a large
variety of images depicting normal and anomalous objects
in various industrial settings. Each image in the dataset is
resized to 256× 256. It contains 5, 354 images divided into
15 texture and object categories. This dataset covers differ-
ent categories such as bottles, cans, machinery, textures, and
more. Each category includes defect-free objects as well
as broken, contaminated, and bent objects. Figure 1 shows
some results where SCDL succeeded, and the other baseline
solutions fail. From these results, we can see that SCDL is
able to identify different shapes with different sizes, which is
challenging for the baseline solutions. This result is achieved
thanks to Shapley and the knowledge base which prunes and
guides SCDL models to converge to the global optimum.
Thus, the choice of the model used in the inference depends
to the collaborative of the models and the similar training
data.
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