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1. Experimental setup

Environment details. MAGMA builds upon the solo-learn

[3] library of self-supervised methods for unsupervised vi-

sual representation learning. All methods are implemented

using PyTorch 1.13 and PyTorch Lightning 1.7.7. The fol-

lowing GPUs are used, depending on availability: NVIDIA

GeForce RTX 2080 Ti, NVIDIA Tesla V100, and NVIDIA

A40.

Datasets. We conduct our experiments on the following

four benchmark datasets:

– CIFAR-100 [5] consists of 60,000 color images

(32x32 pixels) divided into 100 classes, with 500 train-

ing images and 100 test images per class. This large

number of classes with relatively few images per class

pushes models to learn nuanced, discriminative repre-

sentations for robust classification.

– STL-10 [2] Contains 5,000 labeled training images,

8,000 test images, and 100,000 unlabeled images

(96x96 pixels) across 10 classes. This setting of abun-

dant unlabeled data allows the exploration of self-

supervised representation learning techniques, offer-

ing a valuable testbed for scenarios where labeled data

is scarce.

– Tiny-ImageNet [6] is a downsized version of Ima-

geNet with 200 classes, featuring 100,000 training im-

ages, 10,000 validation images, and 10,000 test im-

ages (64x64 pixels). This dataset bridges the gap be-

tween smaller benchmarks and full ImageNet, allow-

ing experimentation with larger-scale image recogni-

tion tasks while maintaining computational feasibility.

– ImageNet-100 [7] is a curated subset of the full Im-

ageNet with approximately 130,000 images (variable

resolutions) across 100 classes. It provides a standard

train/test split, offering a manageable platform to test

the scalability and efficiency of models before moving

to the full complexity of ImageNet.

* equal contribution

This collection of datasets provides a larger range of im-

age classification challenges by varying scales, class com-

plexities, and train/test splits. This suite enables a robust

evaluation of the effectiveness of representation learning

methods and their generalization across diverse scenarios.

Pretraining hyperparameters. We split the parameters

into three categories: (i) common parameters across all

methods and datasets, (ii) parameters used for the MAE-

based methods (MAE [4], M-MAE, U-MAE [8], and MU-

MAE), (iii) parameters used for SimCLR [7], M-SimCLR,

VICReg [1], and M-VICReg. The complete configuration

files for all combinations of datasets and methods can also

be found in the attached code archive.

(i) Common parameters. All methods use AdamW as an

optimizer, with an initial warmup phase of 10 epochs, and

an initial learning rate of 3e − 5 decaying to 0 via cosine

annealing. Normalization is applied using the specific mean

and standard deviation computed across each given dataset.

(ii) MAE-based methods. Mask ratio for all parameters is

0.75, following [4]. For U-MAE and MU-MAE, the uni-

formity weight is set to 0.01, following [8]. The weight for

the MAGMA loss is set to 1. For augmentations, we use a

random resized crop (scale ranging between 0.08 and 1),

followed by a random horizontal flip with a probability of

0.5. The crop is resized to 32× 32 for CIFAR-100, 64× 64

for Tiny-ImageNet, 96× 96 for STL-10, and 224× 224 for

ImageNet-100. All other parameters unrelated to the regu-

larization terms are shared between all methods, and only

depend on the dataset. These can be seen in Table 1.

(iii) Non-generative SSL methods. For SimCLR and M-

SimCLR we use a temperature of 0.2. For VICReg and

M-VICReg, we use the best weights from [1] for the simi-

larity, variance, and covariance loss terms (25, 25, and 1).

The hidden dimensionality of the projector is equal to 2048

for all. For augmentations, each method follows the param-

eters described in the original paper. The rest of the relevant

parameters can be found in Table 2.
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Table 1. Sets of differing parameters for MAE, M-MAE, U-MAE, and MU-MAE across the given datasets

Dataset Backbone Patch Size Epochs Batch Size lr est (Reg. warmup)

CIFAR-100 ViT-Tiny 4 2000 256 1.5e
−4 60

Tiny-ImageNet ViT-Tiny 8 800 512 1.0e
−3 10

STL-10 ViT-Tiny 12 800 512 3.0e
−4 10

ImageNet-100 ViT-Base 16 400 256 1.5e
−4 10

Table 2. Sets of differing parameters for SimCLR, M-SimCLR, VICReg, and M-VICReg across the given datasets

Dataset Backbone Patch Size Epochs Batch Size lr est (Reg. warmup)

CIFAR-100 ViT-Tiny 4 1000 256 1.0e
−3 10

Tiny-ImageNet ViT-Tiny 8 1000 256 1.0e
−3 10

STL-10 ViT-Tiny 12 1000 256 1.0e
−3 10

ImageNet-100 ViT-Tiny 16 200 256 1.0e
−3 10

Table 3. Parameter, Throughput in Images/seconds (Img/sec) and GPU Memory for MAE, U-MAE w and w/o regularization.

Method Parameters Img/sec GPU Memory

MAE 122M 489 28.0 GB

M-MAE (ours) 122M 481 28.1 GB

U-MAE 122M 486 28.0 GB

MU-MAE (ours) 122M 476 28.1 GB

2. Computational Complexity

We compute the total number of parameters, time ef-

ficiency measured by throughput (images per second) and

memory efficiency by peak GPU-memory consumption of

MAE, UMAE with and without our regularization, and

compare them in Table 3. Given the additional cost of com-

puting the sample-wise similarity matrix / laplacian across

an entire batch, M-MAE offers a 1.5% and MU-MAE a 2%

drop in throughput as compared to their respective MAE

and U-MAE baselines. This translates to a minor increase

of 100MB GPU-memory consumption during training, thus

adding an insignificant extra computation cost to the base-

line methods. The parameter count of all methods remain

the same since our regularization method operates on the

same architecture as the MAE and U-MAE baselines.

3. Additional visualizations

We provide additional visualizations of the PCA and at-

tention map results in Figure 1 and Figure 2, as presented

in Section 5.4, using a broader selection of images sampled

from the ImageNet validation set. These additional visu-

alizations further confirm the previously observed patterns

and trends.
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Figure 1. Additional visualization of PCA’s leading component for features extracted from different layers of a ViT-B pretrained using

MAE, M-MAE (ours), U-MAE, and MU-MAE (ours).



Figure 2. Additional attention maps from the 12 attention heads of the last layer of a ViT-B. The attention maps come from three different

images, and for each image, we extract them over the four MAE-based methods evaluated: MAE, M-MAE (ours), U-MAE, MU-MAE

(ours)
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