
Crafting Distribution Shifts for Validation and Training
in Single Source Domain Generalization - Supplementary

Nikos Efthymiadis Giorgos Tolias Ondřej Chum
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1. Dataset Details

Digits dataset details. It is a collection of five digit-
recognition datasets: MNIST, MNIST-M, SVHN, SYN, and
USPS. MNIST-M combines the original MNIST handwritten
digit database with random patches of the BSDS500 dataset.
SVHN is a dataset of real-world house number images from
Google Street View. SYN is a synthetic dataset created from
different Windows fonts after applying geometric transfor-
mations and blurring. USPS is a dataset of scanned digits
from U.S. Postal Service envelopes. To compare with the
literature, we use only the first 10, 000 images of the MNIST
training set. We use 90% for training and 10% for validation.
We are evaluating on the test set of the rest domains.
PACS dataset details. It is a domain generalization dataset
that includes four domains: photo, art paintings, cartoon, and
sketch. It consists of seven classes and 9, 991 images. In the
experiments presented in the main paper, the photo domain
is used as the source, and the remaining domains are used
for evaluation. This Supplementary provides an additional
experiment where each domain is used as the source. The
photo domain consists of 1, 670 images. We use the official
partition of 10% for validation and the rest 90% for training.
Mini-DomainNet dataset details. It is a subset of the do-
main generalization dataset DomainNet [17]. It consists
of 140, 006 images, 126 classes, and four domains: clipart,
painting, real, and sketch. We use the real domain as source,
and we evaluate on the rest. The real domain has 64, 979 im-
ages and we are using the official split that includes 58, 482
images for training and 6, 497 images for validation.
NICO++ dataset details. It is an out-of-distribution gen-
eralization dataset including 88, 866 natural images of 60
categories, where the following contexts serve as the do-
mains: autumn, dim light, grass, outdoor, rock, and water.
Camelyon17 dataset details. It is a medical dataset focused
on tumor detection, with data from five different hospitals.
Data from hospitals 1, 2, and 3 are treated as the source do-
main, and data from hospitals 4 and 5 are the target. Came-
lyon17 consists of two classes: cancerous and non-cancerous
tissue, and it contains 455, 954 images.
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Figure 1. The output of the shape extraction process for BTE and
Sobel-based edge maps from the different target domains in the
PACS dataset. BTE removes texture cues more effectively, making
it a better choice for increasing the shape bias.
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Figure 2. The output of the shape extraction process for BTE edge
maps on images of the photo domain in PACS during training.
BTE introduces randomization at multiple steps of edge detection,
enriching the training set with edge maps that vary in level of detail.

16-class-ImageNet dataset details. The 16-class-ImageNet
dataset [8] is a subset of the ImageNet dataset that maps 231
of the original classes to 16 new ones, closer to the level
of abstraction a human could guess. Although the 16-class-
ImageNet consists of 213, 555 images, we sub-sample to 500
images per class. We test the trained models to the texture-
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Figure 3. Accuracy vs Time: Training on PACS (left) and on Mini-
DomainNet (right) with different number of BTEs in the batch. The
training batch includes 64 RGB images plus 0, 8, 16, 24, 32, 48,
and 64 BTEs (dots).
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Figure 4. Augmented validation without increasing the valida-
tion set size: Correlation between the validation and test accuracy
using the standard validation and the augmented one of the same
size. This experiment shows that it is not the larger size of VA that
makes the difference. The experiment is on the PACS dataset with
a ResNet-18 as a backbone.

shape cue conflict stimuli dataset [7], which is a dataset that
shares the same 16 classes and consists of 1, 280 images.

2. Implementation Details
Shape extraction. The pipeline for BTEs and their random-
ization is adopted from [6] with the exception that we use
Sobel instead of the learnable edge detectors, eliminating the
need for additional training data. The pipeline is as follows:
First, the image is blurred using a Gaussian filter with ker-
nel size 5 and sigma equal to 1.0. Next, the Sobel operator
is applied for edge detection, followed by non-maximum
suppression to thin the edge map. Finally, the edge map is
binarized using adaptive hysteresis. The upper and lower
bounds of hysteresis are chosen as 1.5t and 0.5t, respec-
tively, where the threshold t is selected using Otsu’s method
on the edge map before thinning.

In the randomized variant used for training, the standard
deviation of the Gaussian blurring is chosen randomly from
0,1, and 2, with 0 corresponding to no blur. The threshold-
ing method is randomly picked among Yen [10], Otsu [16],
Isodata [18], Li [13], and the mean method [9]. Additional
random noise is introduced in both the threshold value t and
the hysteresis bounds, enriching the training set.

In the variant using Sobel edge maps, the process is sim-
plified in blurring and applying the Sobel operator. Random-
ization is only through the standard deviation of the Gaussian
blurring. Examples of Sobel-based edge maps and BTEs are
shown in Figures 1 and 2.

Method Art Cartoon Photo Sketch Avg.
ERM 68.80 70.00 38.90 39.40 54.30
JiGen [1] 67.70 72.23 41.70 36.83 54.60
ADA [19] 72.43 71.97 44.63 45.73 58.70
SelfReg [11] 72.59 76.56 43.46 45.76 59.59
SagNet [15] 73.20 75.67 48.53 50.07 61.90
GeoTexAug [14] 72.07 78.70 49.07 59.97 65.00
L2D [20] 76.91 77.88 52.29 53.66 65.18
XDED [12] 76.50 77.20 59.10 53.10 66.50
CADA [4] 76.33 79.08 61.59 56.65 68.41
ITTA [3] 74.60 77.10 60.80 61.20 68.40
ProRandC [5] 76.98 78.54 62.89 57.11 68.88
MCL [2] 77.13 80.14 62.55 59.60 69.86
ABA3l 75.34 77.49 58.86 53.76 66.36
ÎS→I .75S (Ours) 80.67 ± 0.4 76.53 ± 1.1 65.85 ± 0.5 58.41 ± 1.3 70.37 ± 0.5

Table 1. Comparison with state-of-the-art approaches on PACS
with a ResNet18 backbone. Each column corresponds to a differ-
ent source domain, reporting average performance when testing on
the three remaining domains as target domains.

Implementation details for our approach. The basic aug-
mentations include cropping with relative size in [0.8, 1.0],
an aspect ratio in [ 34 ,

4
3 ], resizing to 224× 224, and horizon-

tal flipping with a probability of 0.5. Digits is an exception
where the resize is 32× 32, and the flipping is skipped as it
conflicts with the task. The extra augmentations from the
ImgAug library are from the following groups: arithmetic,
artistic, blur, color, contrast, convolutional, edges, geometric,
segmentation, and weather.

For our PACS, Digits, and Mini-DomainNet experiments,
the learning rate is tuned using a grid search among 33
equidistant values on a logarithmic scale in the range of
[10−5, 1]. The loss weight λ is tuned using a grid search
among 17 equidistant values in [0, 1]. The exponent w is a
test-time parameter, and it is tuned among the values 0, 0.25,
0.5, 0.75, and 1.0 for all of our experiments. The first and
last values correspond to the variants S and I , respectively.
Experiments on PACS and Digits for the comparison with
the state-of-the-art are repeated 30 times. In all other experi-
ments on PACS, Digits, and Mini-DomainNet, we use 5, 5,
and 3 seeds, respectively.

Camelyon17 and NICO++ require longer training because
of the larger size of the former and the randomly initialized
training of the latter. Therefore, we perform a learning rate
grid search for 9 equidistant values on a logarithmic scale, in
the range of [10−5, 1], while we train for 3 different seeds.

For the 16-class-ImageNet experiment, we perform a grid
search for our IS method’s loss weight λ for 16 different
values in the range of [0.0625, 1].

We always use stochastic gradient descent with an ex-
ponential scheduler that decreases the learning rate by two
magnitudes by the end of the training. We tune the num-
ber of epochs and the learning rate jointly for the IS→IS
variant. This experiment provides us with the number of
epochs to use for all variants, which remains fixed for all
the follow-up experiments described in the main paper. We
train our models for 10, 40, 50, 300, 300, and 700 epochs on
Camelyon17, Mini-DomainNet, 16-class-ImageNet, Digits,



PACS-ViT-S PACS-RN18 MiniDN-RN18 MiniDN-Alexnet NICO++-RN18 Digits-LeNet Cam17-RN50
Val Method Acc Method Acc Method Acc Method Acc Method Acc Method Acc Method Acc

VO ÎS→IS 75.68 ÎS→I.75S 66.19 ÎS→I.75S 57.89 ÎS→I.75S 49.10 ÎS→I.75S 29.12 ÎS→I.50S 83.83 ÎS→I 94.47
VS ties∗ 68.70 IS×2→I.50S 51.75 IS×2→I.75S 52.98 I→I 39.82 IS→I.75S 26.86 ISsob→I 72.51 I→I 78.73
VA ÎS→I.75S 74.48 ÎS→I.75S 65.85 ÎS→I.75S 57.35 ÎS→I.75S 48.85 ÎS→I.75S 29.12 ÎS→I.75S 82.61 IS→I 93.56
gain 5.78 14.10 4.37 9.03 2.26 10.10 14.83

Table 2. Method selection based on the validation set: Test accuracy is reported after tuning and selecting the best method among all
proposed variants according to different val sets – i.e., oracle, standard, and augmented. The method chosen and the performance gain
between the augmented and the standard validation set are reported. For ViT-S PACS, VS ties across seven variations; we report the average.

tune learning rate tune loss weight λ
Train→Test VS VA VO Gain VS VA VO Gain

IS→I.25S 58.0 57.6 61.0 -0.4 37.9 56.1 57.7 18.3
IS→I.50S 58.0 59.7 61.3 1.7 35.8 57.1 59.4 21.4
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IS→I.75S 56.7 59.2 61.3 2.5 49.0 57.5 60.4 8.5
IS→I.25S 62.6 65.4 65.9 2.8 63.1 64.9 65.2 1.8
IS→I.50S 67.4 68.5 69.4 1.1 68.0 68.1 68.9 0.1
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V
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-S

IS→I.75S 69.4 71.2 71.5 1.8 70.4 70.6 71.2 0.2
IS→I.25S 45.3 45.5 45.9 0.2 43.6 44.9 45.4 1.3
IS→I.50S 46.9 47.5 48.3 0.6 45.9 47.5 47.9 1.6

M
in

iD
N
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et

IS→I.75S 47.8 47.8 48.1 0.0 46.1 48.0 48.6 1.9
IS→I.25S 51.8 51.6 51.9 -0.2 47.3 50.8 51.0 3.5
IS→I.50S 55.0 55.0 55.5 0.1 48.1 53.9 54.6 5.8
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IS→I.75S 55.5 55.3 56.0 -0.2 50.1 54.7 54.9 4.6
IS→I.25S 78.0 78.8 78.9 0.8 75.4 76.0 76.8 0.7
IS→I.50S 77.8 78.8 79.1 0.9 76.1 76.3 77.2 0.2
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IS→I.75S 76.2 78.6 78.9 2.4 76.4 76.7 77.6 0.3
IS→I.25S 23.4 23.2 23.6 -0.2 23.6 23.7 23.8 0.1
IS→I.50S 25.8 25.7 26.2 -0.1 26.0 26.5 26.7 0.5

N
IC

O
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18

IS→I.75S 26.1 26.0 26.6 -0.1 26.2 26.8 26.9 0.6
IS→I.25S 92.0 92.3 92.4 0.3 92.1 92.2 92.4 0.1
IS→I.50S 93.3 93.4 93.9 0.1 93.7 93.7 93.9 0.0

C
am

17

R
N

50

IS→I.75S 93.8 94.3 94.5 0.5 94.1 94.1 94.5 0.0
Avg gain 0.7 3.4

Table 3. Learning rate and loss weight tuning per validation:
Test accuracy for our method variants is reported after tuning ac-
cording to different validation sets – i.e., oracle, standard, and
augmented. The performance gain between the augmented ver-
sus the standard validation set is also presented. As expected, the
method is more effective for tuning hyperparameters related to
domain generalization, such as the shape loss weight.

PACS, and NICO++ respectively.
Implementation details for the literature methods. Re-
garding SelfReg, SagNet, L2D, and ACVC, we follow all the
implementation details – optimizer, schedulers, augmenta-
tions, and hyperparameters – from the original works, except
for the learning rate. To determine the number of training
epochs, we first set the learning rate to the value reported in
the publication of the respective method and tune the number
of epochs to maximize validation accuracy. Ties are resolved
by picking the smaller number, while we never go for more
than 800 or 100 epochs on PACS and Mini-DomainNet, re-
spectively. Once the number of epochs is tuned, we tune the
learning rate to maximize validation accuracy.

3. Extra Experiments
Performance vs Time: For the proposed validation VA,
there is no matter of time-performance trade-off. We argue
that the standard validation VS is completely incapable of
predicting test performance in the context of domain gener-
alization. This can be seen from Figure 5 of the main paper:

PACS shows an accuracy drop of 22.2 if VS is used over
VA. Methods that do not use the proposed augmentations
in training, such as L2D and SelfReg, do not require the
2-fold cross-validation. In such cases, the time overhead of
VA over VS is only the performance of a random augmen-
tation. For methods that use augmentations, the extra time
compared to VS is approximately doubled because of the
2-fold cross-validation.

For the proposed recognition method, the performance
vs training time trade-off is shown in Figure 3. Even with
roughly half of the training time, when only 25% of the batch
images have their BTEs (16 BTEs) used, the test accuracy
decrease is approximately 1%. The time measurements were
conducted on a single Tesla A100 40GB GPU.
VA vs VS: Effective because it is larger? The proposed
validation method VA increases the variability in the valida-
tion set as well as the size of the validation set by a factor of
10, which is given by the 10 groups of augmentations. To
demonstrate that the benefit does not come from the larger
validation set, we create an additional set by augmenting
each image only once by randomly picking one of the 10
augmentation groups per image. The result is an augmented
set of the same size as the original validation set, which we
denote as Va. We perform the same experiments as in Fig-
ure 4 of the main paper for PACS with a ResNet-18, but we
exclude all variations that use augmentations during training
to avoid overestimation. Figure 4 shows that validation Va

is still significantly better than VS .
Experiments with each domain as the source domain. In
Table 1 we report the performance on the PACS dataset while
using each domain as the source domain. We consider this an
invalid setup due to the ImageNet pre-training. The networks
have seen both real images during the pre-training phase and
also cartoons, artworks, or sketches during training, making
it similar to an MSDG task. Additionally, evaluating on the
photo domain no longer corresponds to testing on an unseen
domain. Nevertheless, we report results following the exam-
ple of the literature, and our method is the top performing.
Training from scratch would make these setups valid for
SSDG, but the literature lacks results for comparison.
Method selection and hyperparameter tuning. We sum-
marize the results of our experiments for method selection
in Table 2 and for hyperparameter tuning in Table 3.
Extra augmentations: Examples from the PACS dataset of
all 76 extra augmentations are shown in Figures 5-7.
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Figure 5. Examples of augmentations used from each augmentation category.
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Figure 6. Examples of augmentations used from each augmentation category.
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Figure 7. Examples of augmentations used from each augmentation category.
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