Supplementary Material for Pixel-Wise Shuffling with Collaborative Sparsity for
Melanoma Hyperspectral Image Classification

A. Effect of Pixel-wise Shuffling (PWS) on
model Performance

Figure 1 shows the graphical representation of the
proposed method with and without Pixel-wise Shuffling
(PWS). As the percentage of training samples increases,
there is a clear trend of improvement across all metrics. The
quantitative results of the proposed method in terms of over-
all accuracy (OA) and average accuracy (AA) are signifi-
cantly lower without the pixel-wise shuffling mechanism,
which is highly important for accurate melanoma classifi-
cation in the proposed approach.
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Figure 1. Graphical representation of the proposed method with
and without Pixel-wise Shuffling (PWS) using different training
samples.

B. Ablation II: Sensitivity Parameters Analysis
of the Proposed Model

We evaluate the impact of the collaborative sparse term
(¢) and the shuffling window size on the performance of
the hyperspectral image classification model. The design
parameter ¢ balances the fidelity of spectral unmixing re-
construction against the sparsity of the abundance matrix,

supported by spatial correlation. A lower ¢ value results in
a denser abundance matrix, capturing detailed information
but increasing computational complexity, as reflected by the
GFLOPs metric in Table 1. The computational require-
ments and efficiency of the proposed method are impor-
tant for practical clinical applications. The analysis shows
that the optimal configuration (¢ = 1 x 1072 and a shuf-
fling window size of 3) achieves the highest classification
accuracy with a reasonable computational cost of 24.3472
GFLOPs. This efficiency is achieved by integrating collab-
orative sparse unmixing and advanced pixel-wise shuffling
techniques, which enhance the model’s accuracy without
significantly increasing computational demand. Despite its
streamlined architecture, the method maintains high perfor-
mance, making it suitable for practical applications in med-
ical diagnostics where computational resources may be lim-
ited. This balance is essential for real-time operation and in-
tegration with standard medical imaging equipment without
extensive upgrades. Lower ¢ values reduce computational
load but compromise classification accuracy, highlighting
the need for a trade-off between computational efficiency
and model performance. Ensuring compatibility with exist-
ing infrastructure and optimizing computational efficiency
is vital for seamless integration into clinical workflows, ul-
timately enhancing melanoma diagnosis accuracy and im-
proving patient outcomes. The study finds the highest pre-
cision at ¢ = 1 X 102 and a window size of 2, indicat-
ing accurate pixel classification. The sensitivity peaks at
the same ¢ value but with a window size of 3, showing the
model’s effectiveness in identifying relevant pixels. The op-
timal configuration is ¢ = 1 x 10~2 and a shuffling window
size of 3, achieving the highest classification accuracy with
reasonable computational cost. While a lower ¢ reduces
computational load, it compromises on classification accu-
racy.

C. Ablation III: Effect of Hybrid Attention
and Spatio-temporal Encoding Blocks on
Model Performance

We perform further comprehensive ablation studies on
the hybrid attention mechanism (cross and self-attention)



Table 1. Ablation II: Sensitivity Parameters Analysis of the Proposed Model (20% training samples)

Collaborative

Shuffling

Sparse Term (o) | Window size OA (%) | AA (%) | Kappa | PRE (%) | SEN (%) | STD | GFLOPs
1 68.09 59.08 42.14 67.02 55.30 0.6643 | 90.9444

2 69.67 60.97 45.16 68.68 57.95 0.6689 | 94.6101

1x 1071 3 67.27 57.95 40.13 65.97 50.61 0.6536 | 94.8348
4 65.10 55.53 36.59 64.20 49.97 0.6442 | 95.5837

5 65.33 56.18 37.48 63.59 50.54 0.6840 | 95.8107

1 70.65 62.59 47.06 70.96 58.60 0.6633 | 22.9670

2 72.62 65.28 51.25 73.14 63.14 0.6737 | 24.3398

1x 1072 3 (Proposed) | 73.34 66.87 53.33 72.73 66.40 0.7051 | 24.3472
4 72.33 64.54 50.53 72.04 61.56 0.6924 | 24.4530

5 70.90 63.01 48.24 70.81 61.31 0.6930 | 24.4604

1 68.92 61.36 45.07 67.89 61.01 0.6928 | 10.7003

2 69.50 60.91 44.98 68.84 56.31 0.6696 | 10.7051

1x1073 3 71.49 64.11 49.43 71.14 60.25 0.7063 | 10.7051
4 71.01 63.56 48.31 70.32 59.02 0.6979 | 10.9520

5 71.41 64.13 49.61 70.67 62.66 0.7175 | 10.9570

1 67.47 58.28 41.10 66.93 54.70 0.6544 | 5.9769

2 69.73 60.84 45.30 69.53 54.13 0.6904 | 6.4399

1x1074 3 68.47 59.50 43.08 67.68 56.16 0.6600 | 6.4399
4 71.32 63.49 49.06 71.07 60.16 0.7057 | 6.4436

5 68.04 60.67 43.86 67.28 61.11 0.6854 | 6.4436

Table 2. Ablation III: Effect of Hybrid (Self+Cross) Attention Mechanism and Spatio-temporal Encoding Blocks on Model Performance

Encoding Mechanism Attention Mechanism Metrics

Temporal | Spatial | Self-Attention | Cross-Attention | OA AA | Kappa | PRE | SEN | STD
X v v X 65.41 | 56.77 | 38.97 | 65.51 | 53.74 | 0.6512
v X v X 65.86 | 56.93 | 39.26 | 66.91 | 55.05 | 0.6536
X v X v 67.32 | 57.71 | 42.16 | 68.78 | 58.19 | 0.6653
v X X v 68.79 | 59.08 | 44.36 | 69.36 | 59.97 | 0.6881
v v v X 70.63 | 61.53 | 47.25 | 70.49 | 62.52 | 0.6927
v v X v 7191 | 64.01 | 49.51 | 71.93 | 64.81 | 0.6980
v v v v 73.34 | 66.87 | 53.33 | 72.73 | 66.40 | 0.7051

and the spatio-temporal encoding blocks, as seen in Table
2. The table shows that the model’s performance improves
in the presence of the four components, with the best re-
sults achieved when the hybrid attention mechanisms, along
with spatial and temporal encoding, are used. It achieves
the highest overall accuracy (OA) of 73.34%, average ac-
curacy (AA) of 66.87%, and Kappa coefficient of 53.33%.
This configuration also yields the best precision (PRE) at
72.73% and sensitivity (SEN) at 66.40%, demonstrating the
model’s superior ability to capture complex dependencies
and interactions in the data. These results highlight the in-
dividual and combined effectiveness of the components in
improving the model’s accuracy in classifying melanoma in
hyperspectral images.

D. Discussion on Potential Real-world Applica-
tion

For seamless integration, the method must be user-
friendly, compatible with existing infrastructure, and capa-
ble of real-time operation. This includes optimizing compu-
tational efficiency and ensuring compatibility with standard
medical imaging equipment without extensive upgrades.
An intuitive user interface is essential for clinicians to eas-
ily interpret results and make informed decisions. Robust
data storage and management systems are needed to handle
large volumes of hyperspectral data, and integration with
electronic health records is essential for streamlined work-
flows. Training and support for clinical staff are vital for ef-
fective use and accurate interpretation of results, ultimately
enhancing accuracy in melanoma diagnosis.



