
A. Appendix
A.1. Computing the surface normal of the road

In this section, we provide a detailed explanation of how
the average normal vector,

Navg(i, j)

, is computed in our method. This process involves defining
the central point and its neighbors, computing vectors to the
neighbors, computing cross products of these vectors, and
finally normalizing and averaging the results.

Navg(i, j) =
1

4

4∑
k=1

Vk1(i, j)×Vk2(i, j)

∥Vk1(i, j)×Vk2(i, j)∥
(20)

where, Vk1 and Vk2 are the vectors from the central point to
its neighbours, as shown in Eq. (21) and Eq. (22).

Vk1(i, j) = P(i+∆ik, j +∆jk)−P(i, j) (21)

Vk2(i, j) = P(i+∆i′k, j +∆j′k)−P(i, j) (22)

with (∆ik,∆jk) and (∆i′k,∆j′k) representing the off-
sets for the neighboring points. Then, the final surface nor-
mal for each pixel is the mean of these normals as shown
in Eq. (20). For example, the computed vectors when using
the nearest neighbors n are:

V11(i, j) = P(i, j − n)−P(i, j)

V12(i, j) = P(i− n, j)−P(i, j)

V21(i, j) = P(i, j + n)−P(i, j)

V22(i, j) = P(i+ n, j)−P(i, j)

V31(i, j) = P(i− n, j − n)−P(i, j)

V32(i, j) = P(i+ n, j − n)−P(i, j)

V41(i, j) = P(i− n, j + n)−P(i, j)

V42(i, j) = P(i+ n, j + n)−P(i, j)

Normalize and Average We normalize each of the com-
puted normal vectors and then take their average. This is
done using Eq. (20). Then, this is the surface normal at
this pixel. These normal vectors are filtered based on their
alignment with the surface normal of the road, as described
in our method.

A.2. Auto-masking for re-projection loss

In the context of self-supervised monocular depth esti-
mation, auto-masking plays a crucial role in handling oc-
clusions. The auto-masking mechanism is integrated into
the minimum reprojection loss, which is defined as:

Lreproj = min
s

pe(Îs, It) (23)

where Is and It represent the source and target images
respectively. The minimum operation in the loss function
ensures that for each pixel in the target image, the model
considers the best possible projection from the source im-
ages. This mechanism effectively serves as an automatic
mask, enabling the model to be robust against occlusions.
The pixels corresponding to occluded regions in the source
image would have a high reprojection error, and hence,
are automatically down-weighted in the loss computation.
This auto-masking mechanism retains only the loss of pix-
els where the reprojection error of the warped image Îs is
lower than that of the original, unwarped source image Is.
This can be mathematically represented as:

Mauto = [min
s

pe(It, Îs) < min
s

pe(It, Is)] (24)

where pe denotes the photometric error, It is the target
image, Îs is the image warped from s to t, and Is is the orig-
inal, unwarped source image. The function Mauto serves as
a mask that includes only the pixels where the reprojection
error of the warped image is lower than that of the original
image, [] denotes Iverson bracket.

where Lidentity is the identity reprojection loss, Lreproj is
the reprojection loss. The mask M takes the value 1 for
pixels where the identity reprojection loss is less than the
reprojection loss, and 0 otherwise. This effectively down-
weights the contribution of occluded pixels in the loss com-
putation, thereby making the model robust to occlusions.
Also this mask Mauto was utilized in the same fashion for
masking out any invalid depth calculated by the teacher θpp.

A.3. Smoothness loss

Equation (25) is widely used in depth estimation mod-
els, which are often trainable methods. This equation en-
courages the disparity map to be smooth in regions where
the image content is smooth, thereby reducing noise and
improving the overall quality.

Lsmooth = |∂xd∗t| · e−|∂xIt| + |∂yd∗t| · e−|∂yIt| (25)

Where d∗ is the mean-normalized disparity. The expo-
nential term makes this a robust function, meaning it is less
sensitive to large disparity changes in the presence of strong
image gradients, which may be gradients due to brightness
changes, or any other external factors. This is important
because edges in an image often correspond to depth dis-
continuities in the scene, so it is desirable for the disparity
map to have sharp changes at these locations. Therefore, the
smoothness loss helps to preserve edge information while
ensuring overall smoothness, leading to more accurate and
visually pleasing disparity maps.

A.4. Scale computation for base-line comparison

In this section, we present the methodology employed to
recover the scale from the depth map using surface normal
vectors, which can be used for any scale-invariant model.
Two different methods are used to compute the scale, both
relying on the predicted height of the camera. Both methods
rely on predicting the surface normal vectors from the depth
map and then using those predictions to estimate the road
plane and camera height.

A.4.1 Method 1: Road Plane Estimation Using
RANSAC

The first method involves estimating the road plane by
leveraging the surface normal vectors predicted from the
depth map.

1. Depth Map and Surface Normals: We start with the
depth map of the scene, and from this, we predict the
surface normal vectors for all the pixels in the image.

2. Identifying Flat Areas: The flat areas in the scene
(same as Mflat) are identified based on the surface nor-
mals, which are pointing almost in the same direction
as the road surface normal.

3. Road Plane Estimation: Using the predicted surface
normals for the flat areas, we employ RANSAC to
compute an estimate of the road plane. Although this
robust estimation technique helps to exclude outliers,
in some cases where there are a lot of non-road flat
areas, it produces wrong results.

4. Camera Height Estimation: Once the road plane is
estimated, the inferred height of the camera can be
computed from its distance to the road plane.

5. Scale Adjustment: The scale is then computed as the
ratio between the predicted camera height and the ac-
tual known camera height.

A.4.2 Method 2: Median Height Estimation from All
Pixels

The second method is computationally more straightfor-
ward, as it avoids the RANSAC optimization process. In-
stead, it calculates the camera height by taking the median
of the estimated heights from the flat pixels, providing a di-
rect and efficient solution.

1. Depth Map and Surface Normals: Similar to the first
method, we start with the depth map and predict the
surface normal vectors for all the pixels.

2. Height Calculation for the flat area: We compute the
inferred height of the camera using all flat-area pixels
in the image.

3. Median Height Estimation: Once the heights are
computed for these pixels, we take the median of these
inferred heights. The median serves as a robust esti-
mate of the camera height, mitigating the influence of
outliers.

4. Scale Adjustment: Similar to the first method, we
compute the scale as the ratio between the predicted
median camera height and the actual known camera
height.

Both methods offer reliable approaches for recovering
the scale based on the camera height derived from sur-
face normals and depth data. Although these methods were
not extensively tested, our results indicate that the second
method is both simpler and yields more accurate scale es-
timates. For this reason, we adopted it in establishing our
baseline using depth maps generated by Monodepth2.

A.5. Zero-shot testing

In the zero-shot testing scenario, we evaluated the model
trained on KITTI using Cityscapes data, which the model
had not seen during training. A key challenge in this pro-
cess was the difference in scale between the datasets. To
ensure a fair comparison, we implemented a straightforward
module to adjust the scale by estimating the camera’s height
relative to the road. This adjustment was done using the
same method described in the scale recovery process, en-
suring consistent and accurate depth estimation across both
datasets.

A.6. Qualitative results

In Fig. 6, we illustrate the entire process of the model,
encompassing both the teacher and student phases, during
training. This serves as a practical demonstration of how
each step is executed within the model. In Figs. 8 to 10, we
present successful cases where the output of Mstatic effec-
tively maps out dynamic objects. Conversely, Figs. 11 to 13
highlight failure cases, where our masking strategy does not
perform as intended, some of these failures are in masking
the dynamic objects by Mstatic, as in Fig. 12, leading to com-
pletely incorrect depth as it calculates the depth based on
the disparity of a moving objects. On the other hand, there
are successful cases, such as in Fig. 9, where the dynamic
object is not entirely masked, but only its boundaries. De-
spite this, the disparity output for the dynamic object is still
correct.

(a) Input Image It (b) The source image, Is = It−1

(c) Input Image Iwt−1 (d) Flowscale output st

(e) γ = h
d (f) Dpp ∗Mcert, computed from θpp

(g) disparity, computed from θmono (h) Imono
t computed from Dmono

(i) Irest computed from ures (j) Ippt computed from Dpp

Figure 6. Example for all the outputs as well as the intermediate
outputs needed for computing the losses

As shown in Fig. 6, the training steps involved in our
pipeline are outlined as follows. Starting with an input and
source image, the teacher model computes the flow scale
(epipolar flow scaling), followed by the calculation of the
gamma parameter. The predicted depth is then masked by
Mcert, ensuring that only reliable depth estimates are re-
tained. Finally, novel views are synthesized using the out-
puts of the model.

A.6.1 Good cases

(a) Original input (b) GeoNet (M) [49]

(c) Monodepth1 (M) [13] (d) Monodepth2 (M) [14]

(e) Monodepth2 (M+S) [14] (f) MonoPP (M)

Figure 7. Qualitative results on KITTI [12], on eigen split [9] in
comparison with other SOTA methods. The finer details of the
bike and the vehicle are detected.

In Fig. 7, we compare our model to recent approaches
that also use single-frame monocular depth estimation. Al-
though our model predicts metric-scaled depth, it achieves
qualitatively comparable results to Monodepth2 (M+S),
which was trained using stereo image pairs. This demon-
strates that our approach performs competitively, despite re-
lying solely on monocular input during training.

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 8. A qualitative example from Cityscapes, which shows
that Mstatic will not affect the fully-static scene, the only masked
area is the textureless sky, which is often mistaken for dynamic
objects

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 9. Qualitative results on KITTI [12], the final depth result
is correct. However, it is a failure case, where Mstatic classifies
some static objects as dynamic and vice versa. This is happening
sometimes due to the rotational movement of the vehicle, hence
some objects are wrongly classified as dynamic objects.

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 10. Qualitative results on Cityscapes example, which was
mentioned in the paper, and this is a good example of the usability
of Mstatic.

A.6.2 Failure cases

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 11. Qualitative results on Cityscapes, and this is one of the
failure cases that Mstatic filters out this dynamic object. However, it
still was perceived as a bigger object, which is due to its closeness
to the camera and its speed.

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 12. This is one of the challenging examples on cityscapes,
which shows that of course our masking strategy does not filter out
all dynamic objects. Hence, this will lead to hallucinated depth,
which negatively affects our losses.

(a) Input Image It (b) Disparity output

(c) The static mask Mstatic (d) The flat area mask Mflat

Figure 13. This is one of the classic failures in Cityscapes, which
is a moving car in front of the ego-vehicle, moving at similar speed
and located around the epipole of the camera movement.

A.6.3 Rendered 3D point clouds results

All the presented figures, Figs. 14 to 18, are formatted such
as the first top image is the input to the inference network for
depth prediction, and then the 3D point clouds are rendered
from this single image only. All the examples are sam-
ples from the evaluation Eigen-split benchmark of KITTI

dataset, which means that the network was not trained on
these samples.

Figure 14. Rendered a 3D point cloud for KITTI data using
MonoPP, based solely on a single 2D image input. Multiple view
angles were used to visualize the scene.

A.7. Quantitative results for KITTI

Tab. 4 provides a comprehensive overview of the state-
of-the-art (SOTA) methods in the field of self-supervised
monocular depth estimation (with and without GT median
scaling). It delineates the key differences between single-
frame and multi-frame methods, providing valuable insights
into their respective strengths and limitations. The table
serves as a useful resource for future researchers, as it un-
derscores the general superiority of multi-frame methods in
terms of performance. However, it also highlights an im-
portant caveat: in scenarios where there is no baseline avail-
able, i.e. only a single frame is available, single-frame meth-
ods may offer better results. This analysis can guide future
research in this domain, informing the choice of methods
based on the specific constraints.

Figure 15. An additional example shows interesting faraway re-
construction of the rendered point clouds from a single image us-
ing MonoPP

Figure 16. This example shows a good quality of rendered scene
from a different view angle

Figure 17. This is a special sample which contains a lot of moving
dynamic objects, which are more prone to error. However, the
rendered scenes are of good quality

Figure 18. This is a special sample which contains a lot of moving
dynamic objects, which are more prone to error. However, the
rendered scenes are of good quality

Year Method Test frames Train Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

sc
al

ed
by

G
T

2017 Monodepth1 [13] 1 M 0.148 1.344 5.927 0.247 0.803 0.922 0.964
2018 GeoNet [49] N M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

2019 Monodepth2 [14] 1
M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

M+S 0.106 0.818 4.750 0.196 0.874 0.957 0.979
2020 Patil et al. [29] N M 0.11 0.82 4.65 0.187 0.883 0.961 0.982
2020 PackNet-SFM [16] 1 M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
2020 DNet [45] 1 M 0.113 0.864 4.812 0.191 0.877 0.960 0.981

2021 ManyDepth [40]
N M 0.098 0.770 4.459 0.176 0.90 0.965 0.983
1 M 0.106 0.818 4.750 0.196 0.874 0.957 0.979

2021 CADepth [46] 1 M 0.110 0.812 4.686 0.187 0.882 0.961 0.981
2021 Sui et al. [35] 1 M 0.111 0.894 4.779 0.189 0.883 0.960 0.981
2022 VADepth [42] 1 M 0.104 0.774 4.552 0.181 0.892 0.965 0.983
2022 MonoFormer [3] 1 M 0.108 0.806 4.594 0.184 0.884 0.963 0.983
2022 DepthFormer [17] N M 0.090 0.661 4.149 0.175 0.905 0.967 0.984
2022 MonoViT [54] 1 M 0.099 0.708 4.372 0.175 0.900 0.967 0.984
2023 Lite-Mono [51] 1 M 0.107 0.765 4.561 0.183 0.886 0.963 0.983
2023 Lite-Mono-S [51] 1 M 0.110 0.802 4.671 0.186 0.879 0.961 0.982
2023 TriDepth [7] 1 M 0.093 0.665 4.272 0.172 0.907 0.967 0.984

MonoPP (ours) 1 M 0.105 0.776 4.640 0.185 0.891 0.962 0.982

w
/o

sc
al

in
g

2019 Monodepth2** [14] 1 camH 0.126 0.973 4.880 0.198 0.864 0.957 0.980
2020 DNet [45] 1 M+camH 0.118 0.925 4.918 0.199 0.862 0.953 0.979
2020 Zhao et al. [53] 1 M+SC 0.146 1.084 5.445 0.221 0.807 0.936 0.976
2020 PackNet [16] 1 M+V 0.111 0.829 4.788 0.199 0.864 0.954 0.980
2021 Wagstaff et al. [37] 1 M+Pose 0.123 0.996 5.253 0.213 0.840 0.947 0.978
2021 Wagstaff et al. [37] 1 M+camH 0.155 1.657 5.615 0.236 0.809 0.924 0.959
2021 Sui et al. [35] 1 M+camH 0.128 0.936 5.063 0.214 0.847 0.951 0.978
2022 VADepth [42] 1 M+camH 0.109 0.785 4.624 0.190 0.875 0.960 0.982
2022 DynaDepth [52] 1 M+Pose 0.108 0.761 4.608 0.187 0.883 0.962 0.982
2023 Lee et al. [24] 1 M+Pose 0.141 1.117 5.435 0.223 0.804 0.942 0.977
2024† Kinoshita & Nishino [21] 1 M+SI 0.108 0.785 4.736 0.195 0.871 0.958 0.981

MonoPP (ours) 1 M+camH 0.107 0.835 4.658 0.186 0.891 0.962 0.982

Table 4. Comparison of our method to existing self-supervised approaches on the KITTI [12] Eigen split [9]. There are two separated
tables, the upper one is dedicated for the comparison of scale-invariant depth, which means the predicted depth still needs to be scaled,
hence all methods still need to calculate the scale from the ground-truth. The lower table focuses on comparing against the methods that
predicts scaled depth. The best results in each subsection are in bold second best are underlined. As shown, Our method outperforms other
methods in predicting scaled metric depth estimation. All comparison is done for the medium resolution (640 x 192). M stands for training
by monocular videos, and S includes stereo data as well. SC* stands for predicting a scale consistent output, which may still need GT for
scaling. Pose for utilizing the pose information, V for utilizing the vehicle’s velocity, and camH for utilizing initial camera height from
the ground, and SI for scraping large-dataset from the internet while training.↑ higher values are better. ↓ lower values are better. † This
is an arxiv pre-print which first published in 2023, but these are their new results reported in 2024. ** is a baseline that we implemented to
predict post-processed metric-scaled depth from Monodepth2, scaled by the GT camera height, as illustrated in Appendix A.4

	. Introduction
	. Related Work
	. Method
	. Planar-Parallax formulation
	. Problem setup
	. Training

	. Experiments
	. Conclusion
	. Appendix
	. Computing the surface normal of the road
	. Auto-masking for re-projection loss
	. Smoothness loss
	. Scale computation for base-line comparison
	Method 1: Road Plane Estimation Using RANSAC
	Method 2: Median Height Estimation from All Pixels

	. Zero-shot testing
	. Qualitative results
	Good cases
	Failure cases
	Rendered 3D point clouds results

	. Quantitative results for KITTI

