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Abstract

This supplementary material is organized as follows:
section 1 details the network training process. section 2 ex-
plain the data preparation methods. Section 3 demonstrate
more results on shapenet and scenes reconstruction results.

1. Network and training
Platform and hardware: The proposed PVT network

is implemented in pytorch [9]. The training and testing are
conducted using a middle-range desktop computer with an
Nvidia RTX A5000 GPU of 24 GB memory.

Loss functions: We implement two loss functions for
occupancy and unsigned distance field learning, respec-
tively. Binary cross entropy loss of Equation 1 is used for
occupancy learning, and truncated regression loss of Equa-
tion 2 is used for unsigned distance field learning.
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Here B is the mini-batch data size, K is the number of query
points for each object, sq,i,j is the prediction value for a
given query point qji , BCE is the binary cross entropy loss
for occupancy field, trun is the truncation function with
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threshold δ, trunc(x, δ) := min(δ, x), with the threshold
set as 0.15.

Training: The network is trained using the Adam opti-
mizer [6] with parameters β1 = 0.9, β2 = 0.999, and an
initial learning rate of 1.0e−4. The learning rate decreases
by 0.1× with the step scheduler at 50 and 100 epochs,
respectively. We use the same ratio of 7:2:1 for train-
ing, validation, and testing for datasets except shapenet.
Shapenet datasets inlcude 26K objects. We follow IFnet [5]
’s train/val/test split and train only 20 epochs.

Metrics: Chamfer distance (CD) as the metric for per-
formance evaluation More specifically, we sample points
on both the reconstruction and the ground truth surface to
serve as the proxy for computing the chamfer distance be-
tween the two surfaces. The chamfer distance between the
two shapes represented by point cloud Pa and Pb respec-
tively can thus be measured as the sum of the average of the
minimum distances from Pa to Pb and from Pb to Pa. In
the paper, we follow ONet [8], IFnet [5], we compute both
CDl1 and CDl2.
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Normal Consistency (NC). The normal consistency be-
tween two points cloud Pa and Pb is defined by the follow-
ing equation:
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where Nnearpa,Pb
is the nearest point of pa of Pa in point

cloud Pb. and Np is the normal of point p on the mesh. F-
Score (FS). F-Score between the two point clouds Pa and
Pb given a threshold t is defined as follows:

F − Score(Pa, Pb, t) =
2Recall · Precision

Recall + Precession
(6)

where

Recall(Pa, Pb, t) = |pa ∈ Pa, s.t. min
pb∈Pb

d(pa, pb)| (7)

Precision(Pa, Pb, t) = |pb ∈ Pb, s.t. min
pa∈Pa

d(pb, pa)|
(8)

We follows ONet [8], ConvONet [10] and POCO [3], we
set t = 1%, 0.5%.

Intersection over Union (IoU) measure the volumet-
ric alignment between the predicted mesh and ground truth
mesh. We basically sample a large number of points in unite
cube of the reconstruction volume. and then count the num-
ber of points that lie in or outside of the predicted mesh and
ground truth mesh. then the IOU is computed as follows:

IoU(Ma,Mb) =
TP

TP + FP + FN
(9)

where TP (resp. FP, FN) are the number of the true pos-
itive points i.e. those correctly predicted as inside occu-
pancy (reps. the number of points wrongly predicted as in-
side actually being outside points, and the number of points
wrongly predicted as outside but actually being inside of the
ground truth mesh). We sample one Million points within
the reconstruction unit volume for this IOU measurement.

2. Data and processing

For training, we prepare three types of data for a given
mesh object:
1. N input points will be sampled from the given mesh. The
given mesh is normalized to [-0.5, 0.5] before sampling.
2. K query points will be generated by adding isotropic
Gaussian noise displacement n ∼ N(0,Σ) to each sampled
surface point, i.e. q = p+n, where Σ ∈ R3×3 is the diago-
nal covariance matrix with variance setting Σ0,0 = Σ1,1 =
Σ2,2 = σ defining the displacement scales. We prepare
three sets of query points K1,K2, and K3, with 500,000
points in each set, and σ equals to 0.25, 0.02, 0.003, re-
spectively for each mesh object. We then randomly pick
15%, 35%, and 50% from K1,K2, and K3, respectively,
and combine them together as the final K = 0.15×K1 +
0.35×K2 + 0.50×K3 query points for each object for train-
ing.
3. Ground truth occupancy and distance value of every
query point for occupancy field and unsigned distance field
training, respectively.

Shapenet: The shapenet dataset [13] contains 13 classes
of objects with watertight surface. Each object will be nor-
malized to a unit sphere with 3000 points sampled for each
object mesh.

Shapenet car with complex inner structures: The
shapenet car dataset [4] contains shapes with complex in-
ner structures. There is a total of 5756 objects in the dataset
with 10,000 points sampled for each object.

Garments/FAUST: In order to evaluate the performance
of open surface reconstruction, we collect 307 garments
data from MGN [1], with 3000 sampled points for each ob-
ject. To enlarge the size of the training data, we further
combine it with the FAUST [2] dataset, which contains 300
real, high-resolution human scans of 10 different persons in
30 different poses.

Gibson: Gibson [12] is a large-scale indoor scene 3D
dataset collected with 3D scanning devices. We pick 35
scenes from the dataset and divide each scene into 2.5 cube-
meter blocks. In training, the blocks are normalized to the
range of [-0.5, 0.5] meters. During testing, blocks are pro-
cessed individually and merged back into the final scene re-
construction.



Model size
(MB)

field construction
(Second)

surface reconstruction
(Second)

total
(Second)

GeoUDF [11] 3.02 1.42 23.20 24.62
GridFormer [7] 52.00 2.78 1.81 4.59
Ours (UDF) 63.69 0.03* 3.22 3.25
Ours(Occupancy) 63.69 1.70 0.23 1.93

Table 1. Computation complexity comparison between baselines and our methods. Model size is in MB. The computation time consists
of 3D distnace field construction in seconds, surface construction time in seconds and total processing time in seconds. *Our UDF model
only has input point encoding time in field construction, while surface reconstruction time is dense surface point generation time

3. More results
Table 1 shows comparison of computation complexity

between the proposed methods and baselines.
Shapenet: Figure 1- 4 show more qualitative results on

Shapenet.
Scene:Figure 5 and 6 shows more qualitative results on

Scene.
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Figure 1. Shapenet reconstruction with 3000 input points and Gaussian noise of standard deviation 0.005. From left to right: input points,
groundtruth, IFnet, POCO, GridFormer, Ours



Figure 2. Shapenet reconstruction with 3000 input points and Gaussian noise of standard deviation 0.005. From left to right: input points,
groundtruth, IFnet, POCO, GridFormer, Ours



Figure 3. Shapenet reconstruction with 3000 input points and Gaussian noise of standard deviation 0.005. From left to right: input points,
groundtruth, IFnet, POCO, GridFormer, Ours



Figure 4. Shapenet reconstruction with 3000 input points and Gaussian noise of standard deviation 0.005. From left to right: input points,
groundtruth, IFnet, POCO, GridFormer, Ours



Figure 5. Large scale indoor scene reconstruction result of the Gibson dataset [12]. From top to bottom: input points, ground truth mesh,
reconstruction, error map. Here the error map is measured in the meter scale, e.g. ”0.01” in the color bar means an error of one centimeter.



Figure 6. Large scale indoor scene reconstruction result of the Gibson dataset [12]. From top to bottom: input points, ground truth mesh,
reconstruction, error map. Here the error map is measured in the meter scale, e.g. ”0.01” in the color bar means an error of one centimeter.


	. Network and training
	. Data and processing
	. More results

