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(†) Universite Paris-Saclay, CentraleSupélec, MICS, 91190, Gif-sur-Yvette, France

A. Experimental settings
A.1. Datasets for incremental tasks

We consider four datasets containing a thousand classes
each, denoted Casia, Herbarium, Inat, and Landmarks and
sampled from Casia1 [22], Herbarium 20202 [6], Google
Landmarks v23 [10] and iNaturalist 20184 [20], respec-
tively.

In the experiments involving generated data to augment
the initial subset of classes from Casia, we use the dataset
provided by the authors of DCFace5 [7]. For the other
datasets, synthetic classes of the domain are obtained by fol-
lowing the procedure described in subsection A.2, and Im-
ageNet classes are selected following the method described
in subsection A.3.

A.2. Generation of additional classes for pre-
training

We remind that the set of classes corresponding to the
initial subset of data D1 is denoted C1. We explain how to
obtain a set of new class names C̃1 from the same domain
as the classes from C1. Then, we populate visual classes by
prompting a text-to-image model with the class names from
C̃1.

Generation of class names. We assume that each class
from C1 is described by its name ci and by a short textual
description di. To obtain a list of new class names from the
same domain as the classes from C1, we prompt the LLM
with couples of a class name from C1 and its description.
From the output of the LLM, we form a new list of pairs
(c̃, d̃), where c̃ is a new class name and d̃ is its associated

1https : / / github . com / deepinsight / insightface /
tree/master/recognition/_datasets_

2https://www.kaggle.com/c/herbarium-2020-fgvc7
3https : / / github . com / cvdfoundation / google -

landmark
4https://github.com/visipedia/inat_comp/blob/

master/2018/
5https://github.com/mk-minchul/dcface

description.
In practice, we used the pre-trained Llama-2-

13b-chat6 [19] model and the huggingface libraries
diffusers (version 0.21.4) and transformers
(version 4.34.1). Class descriptions are either available in
the metadata or can be obtained by prompting an LLM
with the following pattern: “Here is a list of < domain >
concepts: {c1, c2, . . . }. Could you provide a short visual
description of each concept?”.

To facilitate post-processing, we first provide a system
prompt to parse the output as a JSON file easily: “role:
system, content: Always answer in JSON format.” We also
present class examples as JSON. “Here is a JSON con-
taining < domain > names: {′′domain′′ : {c1 : d1,
c2 : d2, . . . }}. Could you provide ten more items on the
same topic, with a short visual description of each item?”.

In our experiments, we use a maximum sequence length
of 512 tokens for the input of the LLM (same for the out-
put). To account for this constraint, we prompt the LLM
multiple times with different examples and ask for only ten
results each time. We randomly sample three class names
from C1 for each prompt to obtain diverse outputs. We also
use different temperatures (0.6, 0.7, 0.8) and top-p values
(0.9 and 0.92). We iterate the process until we obtain 1000
new unique class names.

Example with Inat. First, we associate a WordNet de-
scription with each Inat class using NLTK version 3.8.1.
We take advantage of the fact that each class from iNatu-
ralist 2018 corresponds to a living species and is provided
with the species’ ancestors in a natural taxonomy. We re-
mark that each species can be associated with a WordNet [8]
synset through its name or the name of an ancestor in the
natural taxonomy.

Then, we use the class names along with their descrip-
tion to prompt the LLM: “Here is a JSON containing fauna,
flora, and fungi species with their description: {”species”:
{”name”: ..., ”description”: ...} }. Could you provide 10

6https://github.com/facebookresearch/llama

https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_
https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_
https://www.kaggle.com/c/herbarium-2020-fgvc7
https://github.com/cvdfoundation/google-landmark
https://github.com/cvdfoundation/google-landmark
https://github.com/visipedia/inat_comp/blob/master/2018/
https://github.com/visipedia/inat_comp/blob/master/2018/
https://github.com/mk-minchul/dcface
https://github.com/facebookresearch/llama


more species names, with a short visual description of each
item?”. Here are some examples of class names and de-
scriptions provided as inputs to Llama-v2-13b-chat.

• Malurus cyaneus, largest order of birds comprising
about half the known species; rooks; finches

• Microcarbo africanus, cormorants
• Dactylotum bicolor, short-horned grasshoppers; true

locusts
• Heterotheca villosa, genus of yellow-flowered North

American herbs
• Plantago virginica, type genus of the family Plantagi-

naceae; large cosmopolitan genus of mostly small.
Here are some examples of class names and descriptions
provided as outputs by the LLM.

• Crocodilus porosus, saltwater crocodile; reptile
• Delphinium elatum, larkspur, a tall, slender flower

with delicate petals
• Tulipa gesneriana, a type of tulip with large, showy

flowers in shades of pink, yellow, and white
• Ganoderma applanatum, a species of bracket fungus

with a flat, shelf-like cap and a distinctive red-brown
color

• Dendrocalamus giganteus, tall bamboo grass with hol-
low stems and long, thin leaves.

Example with Herbarium. In the case of Herbarium, we
do the same as for Inat, but only with the names of plant
species.

Example with Landmarks. Using Google Landmarks v2
metadata, we assign each class to a landmark category.
Then, to obtain new class names for Landmarks, we prompt
the LLM as follows: “Here is a JSON containing landmark
names with their description: {”landmark”: {”name”: ...,
”description”: ...} } Could you provide 10 more landmark
names, with a short visual description of each item?”. Here
are some examples of class names and descriptions pro-
vided as inputs to Llama-v2-13b-chat.

• Walls of Ávila, castle, city walls
• Hôpital Notre-Dame à la Rose, hospital
• Niagara Falls, waterfall
• Dayr-e Gachin, caravanserai
• Grote of Onze-Lieve-Vrouwekerk (Breda), church

building
Here are some examples of class names and descriptions
provided as outputs by the LLM.

• Kremlin wall and towers, fortress walls and towers
with golden domes

• Bamboo forest, lush greenery, hiking trail, japan
• Mendenhall glacier, glacier, Alaska
• Reims cathedral, a gothic cathedral with stunning

stained glass windows and ornate stone carvings,
• Kizhi pogost, a historic wooden church complex
Generation of images. For each new class from C̃1,

we obtain its associated images by prompting a generative

model with its name c̃ and its visual description d̃. In prac-
tice, we use the Stable-Diffusion-2-1-base (SDv2.1) model,
which provides high-quality images at a reasonable com-
putational cost. We use the DPMSolverMultistepScheduler
for image denoising and the CLIP text encoder to encode
prompts. We use the following prompt: “a photo of a c,
d”. We use the seeds 0, 1, 2, . . . n− 1 to generate n images
per class (202 for Herbarium, 310 for Inat, 350 for Land-
marks). As reported in [17], describing the class enhances
image diversity and accuracy in the case of polysemy. Fol-
lowing the authors of [17], we use 50 denoising steps and a
guidance scale of 2.0. Other hyperparameters are used with
their default values.

Example with Inat. We remark that most of the images
that we generate using SDv2.1 are visually pleasant and
match their class descriptions. However, the classes formed
by generated images may be challenging for supervised
learning in two ways: (i) some classes exhibit high visual
diversity (see Figure 1), (ii) some classes are also hardly
discernible from another (see Figure 2). The conjunction of
high intra-class diversity and high inter-class similarity for
class names, which may not be well covered by the training
set of the generative model, e.g., rare plants, makes these
classes less valuable for supervised pre-training.

Example with Landmarks. The generated classes are
generally satisfying as they are visually pleasant and match
their class description (e.g., Ephesus ruins in Figure 3).
However, we remark that even well-known landmarks are
subject to hallucinations; for example, the duplicated Eiffel
Tower in Figure 4.

Face generation with DCFace. In the case of Casia,
we augment the dataset using the recent method named
Dual Condition Face Dataset Generator (DCFace) [7].
This method addresses the problem of generating a label-
consistent and diverse training dataset for face recognition.
It relies on a two-stage generator that controls the consis-
tency, diversity, and subject uniqueness of the generated
faces. In practice, we use the first thousand classes from
the dataset released by the authors7.

A.3. Selection of additional classes from ImageNet-
21k

For each dataset, we randomly sample a thousand leaf
classes from ImageNet-21k. First, we use the WordNet
knowledge base to select concepts belonging to the same
topic as the initial classes of a given stream, e.g. plant
species for Herbarium. Then, we select the ImageNet
classes that correspond to leaf concepts in WordNet and a
thousand classes along those that contain at least 202 im-
ages for Herbarium, 310 images for Inat, and 350 images
for Landmarks, so that the augmented set of initial classes
is balanced. Note that we did not include experiments with

7https://github.com/mk-minchul/dcface

https://github.com/mk-minchul/dcface


(a) (b) (c) (d)

Figure 1. Images generated by SDv2.1 using the prompt “a photo of Lycopus uniflorus, a delicate, white, funnel-shaped flower with a
yellow center” and four different random seeds. Images match the class description but vary visually to an extent that is not representative
of the actual species (e.g., different petal shapes in images (a) and (b)).

(a) (b) (c) (d)

Figure 2. Images generated by SDv2.1 using the prompts (a, b) “a photo of Rhododendron ferrugineum, a flowering shrub with vibrant
pink flowers” and (c, d) “a photo of a Rhododendron ponticum, a lowering evergreen shrub with large, showy flowers”. Images match the
description, but the two classes are visually very similar.

ImageNet classes in the case of Casia, as not enough classes
matched the requirements.

A.4. Training feature extractors from scratch

In the following, we provide the hyperparameters used
to train feature extractors from scratch. All our experi-
ments are implemented with PyTorch [12]. Models are
trained either on the images from the initial subset of classes
D1 containing b classes (init) or on the augmented subset
D1 ∪ D̃1 containing b+ x classes. Here b denotes the num-
ber of classes in D1, and x denotes the number of additional
classes in D̃1, either synthetic (init+gen) or selected from
ImageNet (init+web).

Vanilla supervised learning In our experiments with
vanilla supervised learning (SL), we randomly initialize a
ResNet50 network [5]. We randomly resize and crop train-
ing images to 224 by 224 pixels and flip them horizontally
with a probability of 0.5. We train the model for 100 epochs
with a batch size of 128, an initial learning rate of 0.1, dand
ecayed after 30, 60, and 90 epochs by a factor of 0.1. We use
the SGD optimizer with a momentum of 0.9. and a weight
decay of 10−4.

tReX In our experiments with tReX [18], we used the

implementation released by the authors8. The architecture
of the encoder is a ResNet50 network. An auxiliary module
(projector) is added after the encoder during training and
is discarded at test time. The projector is a means of con-
trolling the trade-off between performance on the training
task and transferability on downstream tasks. In our ex-
periments, we use a three-layer projector because it is the
version that produces the best transfer results, as reported
in [18]. The rest of the hyperparameters we use also corre-
spond to the best-transferable tReX version as per [18], i.e.,
one global crop with a range (0.25, 1.0), eight local crops
of range (0.05,0.25), and a bottleneck dimension of 256.
For experiments with the datasets Inat and Landmarks, we
trained the model for 100 epochs. For experiments with
Casia, we trained the model for 120 epochs because we ob-
served a slower convergence.

In the case of Casia b100t9, we encountered difficulties
making the model converge when adding 1000 synthetic
classes and using the default hyperparameters of tReX. We
hypothesize that the convergence problem occurs because
the information contained in small crops of synthetic im-
ages of faces may not be sufficiently consistent for super-

8https://github.com/naver/trex

https://github.com/naver/trex


(a) (b) (c) (d)

Figure 3. Images generated by SDv2.1 using the prompt “a photo of Ephesus, ancient city, ruins”. Different seeds produce different
viewpoints and lighting conditions, like in the images of the original Landmarks dataset.

(a) (b) (c) (d)

Figure 4. Examples of visual hallucination in images generated by SDv2.1 using the prompt “a photo of Eiffel Tower in Paris, an iconic
tower with lattice-like structure and a beautiful view of the city”. The tower is depicted twice (a,c) or with a fence in the background (b).
In this case, the class description mentioning “a lattice-like structure” may not enhance generation quality.

vised learning. So, we increased the resolution of global
crops from (0.25, 1.0) to (0.9, 1.0) and from (0.05, 0.25)
to (0.5, 0.9) for local crops. This enabled convergence but
with relatively low accuracy compared to the other exper-
iments with additional synthetic classes. As the authors
of [7] remark, faces generated with DCFace lack 3D con-
sistency across poses. There is still a performance gap be-
tween real (natural) and synthetic datasets for training a face
recognition model.

A.5. Pre-trained baselines

In our study, we compare models trained from scratch
on the initial subset of classes with models pre-trained on
larger datasets.

• We used the weights from PyTorch hub9 for the
ResNet50 model trained on ImageNet-1k.

• We used the checkpoint from the authors of Tiny-
CLIP [21] for the ResNet50 model pre-trained and dis-
tilled on LAION-400m using OpenCLIP ViT-B/32 as
teacher model10. TinyCLIP is a recent method for dis-

9https : / / pytorch . org / vision / main / _modules /
torchvision/models/resnet.html#ResNet50_Weights

10https://github.com/wkcn/TinyCLIP

tilling large-scale vision-language models. It is able to
largely reduce model size while maintaining compet-
itive zero-shot performance and linear probing accu-
racy for downstream tasks.

• We used the following pre-trained vision transformer
(ViT) models from timm library11:

– ViT-small trained on ImageNet-1k with AugReg,
– ViT-small model trained on ImageNet-21k with

AugReg,
– ViT-small model trained on LVD-142m with DI-

NOv2, and
– ViT-small model trained on LVD-142m with DI-

NOv2 and distilled on ImageNet-1k12.

• We also consider “first-session adaptation” as in [11],
i.e., fine-tuning a pre-trained model on the initial
classes and then freezing the weights for transfer. We
implemented the parameter-efficient transfer learning
procedure of AdaptFormer [1]. We apply it to the ViT-
S network pre-trained on ImageNet-21k and fine-tune

11https://github.com/huggingface/pytorch-image-
models/blob/main/timm/models/vision_transformer.
py

12https://github.com/facebookresearch/dinov2

https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html#ResNet50_Weights
https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html#ResNet50_Weights
https://github.com/wkcn/TinyCLIP
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/facebookresearch/dinov2


it on the initial classes. We make a hyperparameter
search with an initial learning rate of 0.05 or 0.01 and
10, 20, or 50 fine-tuning epochs. We use a cosine an-
nealing learning rate scheduler with a minimum learn-
ing rate of 10−8.

We have chosen these baseline models to encompass dif-
ferent sizes and subjects of pre-training datasets, differ-
ent network architectures, and different training paradigms
(supervised, self-supervised). ImageNet-1k and ImageNet-
21k are commonly used for fine classification tasks and
cover many concepts, such as animals, foods, plants, or
objects. They provided longstanding baseline models for
transfer learning. The models pre-trained on LAION-400m
and LVD-142m are stronger baselines, as these datasets are
richer and more diverse. We expect all pre-trained models
to produce high-quality representations for the Inat classes,
as natural species are well represented in the pre-training
datasets. LVD-142m includes about 10% of images close
to Landmarks concepts. This includes Google Landmarks
v2 and an augmented version of Google Landmarks v2 ob-
tained by web crawling, so we expect the corresponding
models to transfer well to the Landmarks data stream. On
the contrary, there are few human faces in the pre-training
datasets, so we expect the Casia classification tasks to be a
challenge for the baseline models.

A.6. EFCIL algorithms

For a given set of initial classes and a given feature ex-
tractor, we first compute the images’ embeddings. For each
class, a class prototype is computed by averaging the em-
beddings of the training samples belonging to the class.
Then, we train the four EFCIL algorithms using the hyper-
parameters listed below. Each of the following algorithms
relies on a fixed image encoder and performs inference by
comparing the embedding of an input image with the mean
embedding vector of the past classes. The algorithms differ
in the way this comparison is implemented. Our implemen-
tation of DSLDA 13 [4], FeTrIL14 [14] and FeCAM15 [3] is
based on the original repository of the authors.

NCM. At inference, the prediction for a given test sam-
ple is computed as the class whose prototype is the nearest
to the test sample’s embedding in the sense of the cosine
distance.

DSLDA. This algorithm performs a linear discriminant
analysis. It updates a covariance matrix and bias vector on-
line. We do not modify the default hyperparameters. The
value of the shrinkage parameter before matrix inversion is
0.0001.

FeTrIL. The method classifies images based on linear

13https://github.com/tyler-hayes/Deep_SLDA
14https://github.com/GregoirePetit/FeTrIL
15https://github.com/dipamgoswami/FeCAM

SVCs trained using scikit-learn implementation [13].
Hyperparameter values are C = 1.0 and toler = 0.0001.

FeCAM. For a fair comparison with the other algorithms
regarding memory requirements and computing at inference
time, we use the version of FeCAM with one common co-
variance matrix for all seen classes. We tune the shrinkage
coefficients by exploring the range of values 0.0 (no shrink-
age), 0.01, 0.1, 1.0, 5.0, 10.0.

A.7. Indicators.

In the following, we summarize the indicators used in
our experimental study.

Accuracy. EFCIL algorithms are commonly compared
based on their average incremental accuracy, computed as:

A =
1

T

T∑
t=1

Acc
[1:i]
t , (1)

where Acc
[1:i]
t is the accuracy of the model Mt on test sam-

ples from
⋃i

j=1 Dj , after learning at step st [16].
Forgetting. The average forgetting is computed as [9]:

F =
1

T − 1

T−1∑
i=1

fi, (2)

where the individual forgetting value is computed by:

fi = max
i≤k≤T

Accik −AcciT , (3)

i.e., it is the difference between the best accuracy achieved
for Di at any step sk by a model Mk, and the accuracy of
the final model MT on Di.

Ranks. Let us consider a feature extractor Φ and a data
stream D = D1 ∪ D2 ∪ . . . . We denote by Q the matrix
containing the stacked embeddings of the test samples from
the first subset of classes D1, computed using Φ. We denote
by K the dimension of the feature vectors and by N the
number of samples used to compute Q. In our analysis,
we use the following indicators to compute the rank of the
feature matrix Q.

• The number of eigenvalues to explain 80% of the vari-
ance of the feature matrix, using a PCA (computed us-
ing scikit-learn [13]).

• The number of eigenvalues to explain 80% of the vari-
ance of the covariance matrix Cov(Qt · Q), using a
PCA.

• The number of eigenvalues above a given threshold α
[15], e.g.

rank(Q) =

min(N,K)∑
k=1

1σk>α, (4)

where σk is the k-th eigenvalue of Q, α is computed as
maxiσi × max(K,N) × ϵ and ϵ is a small constant
depending on the float precision, here 10−7.

https://github.com/tyler-hayes/Deep_SLDA
https://github.com/GregoirePetit/FeTrIL
https://github.com/dipamgoswami/FeCAM


• The information-based rank proposed by [2], defined
as:

RankMe(Q) = exp(−
min(N,K)∑

k=1

pklog(pk)), (5)

where pk is computed as σk(Q)
||σ(Q)||1 + ϵ. RankMe pro-

vides a smooth measure of the embeddings’ rank and
can be used to predict the linear probing performance
of Φ, even on an unseen dataset, if the tasks of the
source dataset of the encoder and of the target task are
relatively close.

The intuition motivating the use of ranks to estimate the
transferability of a given model for an EFCIL stream is that
as long as the training dataset of the encoder is relatively
diverse or near to the domain of the stream, an encoder with
a greater embeddings’ rank on the initial subset of classes
D1 will also have a greater embeddings’ rank on the next
subsets D2, D3... and this, in turn, correlates with higher
accuracy with linear probing. However, we note that the
EFCIL algorithms of our study go beyond linear probing, so
we do not obtain correlations as strong as the ones reported
by [2] in the case of linear probing.

B. Visualization of results
B.1. Comparing vanilla supervised learning (SL)

and tReX training methods

In Figure 5 we show the average incremental accuracy
of EFCIL algorithms that use a feature extractor trained on
the initial subset of classes either with SL or with tReX, as
a function of the initial accuracy. Experiments that corre-
spond to a higher initial accuracy and to a higher average in-
cremental accuracy correspond to models with an increased
performance on the initial subset of data and an increased
transferability on the next subsets of classes. We observe
that DSLDA, FeTrIL, and tReX generally benefit from us-
ing a feature extractor trained with tReX. On the contrary,
NCM performance drastically deteriorates both in terms of
initial accuracy and average incremental accuracy when us-
ing tReX instead of SL.

This trend is also visible in Figure 6, where the average
forgetting of the EFCIL algorithms is reported as a function
of their initial accuracy. Except for NCM, the EFCIL al-
gorithms used in our experiments exhibit a lower forgetting
when using tReX.

We measured the cosine distance between a test sample
and its prototype for models trained with SL and with tReX.
On average, this distance is reduced when using tReX in
comparison with SL (i.e. points are tighter packed). We
also measure that the ratio of the cosine distances between
(i) a test sample and its true prototype and (ii) the same test
sample and its nearest confounding prototype is reduced.

This is coherent with the lower performance of the NCM
classifier when using tReX. However, classifiers that model
more complex distributions are able to benefit from the rep-
resentation obtained with tReX.

For each dataset, we illustrate with UMAP projections
the distribution of seven classes in the latent space of fea-
ture extractors trained on the first one hundred classes of the
dataset using either SL or tReX, without additional classes
in Figure 7, or with a thousand additional synthetic classes
in Figure 8. We remark that the shape of the clusters is quite
different from one method to another and slightly changes
when adding a thousand synthetic classes to the training set
of the feature extractor, especially in the case of Casia.

We provide below the list of class names and descrip-
tions for each dataset of Figure 7 and Figure 8.

Landmarks:
0. Haleakala National Park (parks, National Park of the

United States)
1. Sofiyivsky Park, (parks, botanical garden in Ukraine)
2. Purana Qila (castle / fort, fortification in India)
3. Lake Como (lake, lake in Italy)
4. Çufut Qale (castle / fort, ancient fortress in Ukraine)
5. Lok Virsa Museum, Islamabad (museum, art museum

in Pakistan)
6. Lake Bled (lake, lake in Slovenia).

Inat:
0. Microcarbo africanus, (Animalia, Chordata, Aves,

Suliformes, Phalacrocoracidae, Microcarbo, cor-
morants)

1. Aphylla angustifolia (Animalia, Arthropoda, Insecta,
Odonata, Gomphidae, Aphylla, dragonflies and dam-
selflies)

2. Eryngium planum (Plantae, Tracheophyta, Magno-
liopsida, Apiales, Apiaceae, Eryngium, large genus
of decorative plants with thistlelike flower heads; cos-
mopolitan in distribution)

3. Helophilus pendulus (Animalia, Arthropoda, Insecta,
Diptera, Syrphidae, Helophilus, a large order of insects
having a single pair of wings and sucking or piercing
mouths; includes true flies and mosquitoes and gnats
and crane flies)

4. Buteogallus urubitinga (Animalia, Chordata, Aves,
Accipitriformes, Accipitridae, Buteogallus, hawks;
Old World vultures; kites; harriers; eagles).

5. Camassia quamash (Plantae, Tracheophyta, Liliop-
sida, Asparagales, Asparagaceae, Camassia, genus of
scapose herbs of North and South America having
large edible bulbs).

6. Chlidonias niger (Animalia, Chordata, Aves, Charadri-
iformes, Laridae, Chlidonias, gull family: gulls and
terns)

Casia
0. 0781981: male, middle-aged



Figure 5. Comparing SL and tReX from the point of view of their initial accuracy and average incremental accuracy (A). Values in the
upper right corner are better.

Figure 6. Comparing SL and tReX from the point of view of their initial accuracy and average forgetting (F). Values in the lower right
corner are better.

1. 0278304: female, young
2. 0004980: female, middle-aged
3. 0000610: male, young
4. 0000389: male, young
5. 3592338: female, young
6. 0001099: male, young



Figure 7. UMAP projection of seven classes for various feature extractors trained on the first 100 classes of the data stream, either using
vanilla supervised learning (SL) or tReX.

Figure 8. UMAP projection of seven classes for various feature extractors trained on the first 100 classes of the data stream augmented by
a thousand synthetic classes, either using vanilla supervised learning (SL) or tReX.



B.2. Comparing baseline feature extractors

In Figure 9, we report the average incremental accu-
racy of each of the four EFCIL algorithms used in our
study, in combination with each of the six pre-trained mod-
els used as baseline for feature extraction. We observe that
the ResNet50 model and the ViT-small model trained on
ImageNet-1k are consistently the least-performing feature
extractors. ResNet50 pre-trained on LAION-400m comes
close to the ViT-S pre-trained on LVD-142m in the experi-
ments with Casia but has difficulties with the fine-grained
natural concepts of Inat. On the contrary, the ViT-small
model trained on ImageNet-21k with AugReg comes close
to the Vit-small models pre-trained on LVD-142m (origi-
nal version, or distilled version using ImageNet-1k), be-
cause ImageNet-21k entails many natural concepts too. The
Landmarks data streams are best classified when using fea-
ture extractors trained on the largest databases LAION-
400m and LVD-142m, which cover the topic of scenes and
places more extensively than ImageNet-1k and ImagNet-
21k do.

B.3. Comparing the efficacy of scratch training ver-
sus large-scale pre-training

In Figure 10 and Figure 11, we show the average in-
cremental accuracy of each EFCIL algorithm as a function
of the number of samples used to train the feature extrac-
tors. The results highlight the prevalent role of the domain
shift between the initial training set and the incremental
tasks on EFCIL accuracy. The results reported for FeCAM
in Section 4 hold for the other algorithms NCM, DSLDA,
and FeTrIL. For Casia, we observe that the baseline mod-
els are ineffective. This is coherent with the fact that none
of the external pre-training datasets specifically cover hu-
man faces. ImageNet-21k and LVD-142m, primarily built
on top of ImageNet-21k, include many natural species, and
we observe that the accuracy of the associated pre-trained
models is high for Inat. LVD-142m also includes an ex-
tended version of Google Landmarks v2, from which the
Landmarks dataset used in our experiments is sampled. De-
spite this intersection, the models trained on the augmented
initial subset outperform those trained on the LVD-142m
dataset, which is a thousand times larger.

B.4. Choosing a feature extractor from the initial
dataset

In Figure 12, we reproduce Figure 7 in higher resolution.
It compares linear regressions computed on the results of
EFCIL experiments with pre-trained baselines (black line)
and EFCIL experiments with feature extractors trained on
the initial classes (red line).

To complement Figure 12, we report the Pearson corre-
lation coefficient between various indicators:

• B: number of classes in the initial subset of classes

• X: number of synthetic classes added in the training set
of the feature extractor

• n samples all, n samples init, n samples incr: the
number of training samples in the whole data stream
D =

⋃T
i=1 Di, in the initial subset of classes D1 and

in the incremental steps D2 ∪D3 . . . DT , respectively

• for each EFCIL algorithm (NCM, DSLDA, FeTrIL,
FeCAM):

– avg acc incr: average incremental accuracy,

– init acc: initial accuracy Acc11,

– last acc: final accuracy Acc
[1:T ]
T ,

– avg f: average forgetting F ,

– init f: forgetting on the initial subset of classes
only f1 (see Equation 3),

– incr f: average forgetting on the incremental
tasks only 1

T−2

∑T−1
i=2 fi.

• ranking indicators for the initial subset of data (init),
for the subsequent subsets of data (incr), or for the
whole dataset (all), with each of the four methods pre-
sented in appendix A.7:

– norm n80: number of principal components to
account for 80% of explained variance of the fea-
ture matrix

– norm r: rank computed as per Equation 4

– norm info r: rank computed as per Equation 5

– norm n80 cov: number of principal components
to account for 80% of explained variance of the
covariance matrix computed from the feature ma-
trix.

Ranks are normalized by the total number of dimensions of
the embedding space to account for the different dimensions
of latent spaces across architectures, e.g. 2048 dimensions
for ResNet50 versus 384 for ViT-small. A white row or
column corresponds to constant values (e.g. the threshold is
too low for the basic rank indicator in the case of SL).

We remark that different correlation patterns appear in
Figure 13 (SL), Figure 14 (tReX), and Figure 15 (pre-
trained baseline models). Correlations between the accu-
racy of the EFCIL methods are very high in the case of pre-
trained baselines and of EFCIL experiments trained with
SL. They are weaker in the case of tReX, indicating that dif-
ferent EFCIL algorithms do not benefit alike from the em-
beddings produced by tReX (e.g., NCM versus FeCAM).

We remark that EFCIL experiments that use a feature
extractor trained with SL (Figure 13) exhibit a relatively



Figure 9. Comparison of pre-trained baseline models. Average incremental accuracy obtained with four EFCIL algorithms (NCM, DSLDA,
FeTrIL, FeCAM).

strong correlation (around 0.7) between their average incre-
mental accuracy and the rank of the initial feature matrix.
This could offer the basis for a heuristic to choose a feature
extractor at the beginning of the incremental learning pro-
cess. A positive correlation is obtained for the other rank-
ing methods, e.g., the information-based rank of the initial
feature matrix, but is less strong (0.40 to 0.66). Accuracy
and rank are mildly correlated in the case of experiments
with tReX (Figure 14). In the case of experiments with pre-
trained baselines (Figure 15), the average incremental accu-
racy of EFCIL algorithms is most correlated with the rank
of the feature covariance matrix.

We note that when combined with a pre-trained base-
line model or with a feature extractor trained with tReX,
FeTrIL’s forgetting tends to increase with its accuracy,
which is not desirable behavior. FeTrIL is based on the
assumption that classes whose prototype is close in latent
space are similarly distributed. This does not seem to be the
case in these experiments. The average incremental accu-
racy of FeTrIL is nevertheless positively correlated with the
initial accuracy.

Finally, we note that some of the issues discussed previ-
ously can also be illustrated from the correlation matrices,
e.g. training a model with SL on more data (real or syn-
thetic) improves the performance of the EFCIL algorithms
(Figure 13), whereas there are exceptions with tReX, e.g.
the non-parametric classifier NCM behaves differently to
the other EFCIL algorithms and does not benefit from tReX
(Figure 14).



Figure 10. Comparison of pre-training methods using NCM, DSLDA, FeTrIL, or FeCAM for b100t9 and b500t10 scenarios. For each
experiment, we plot the average incremental accuracy as a function of the log number of samples used to train the feature extractor.



Figure 11. Comparison of pre-training methods using NCM, DSLDA, FeTrIL, or FeCAM for b10t9 and b50t10 scenarios. For each
experiment, we plot the average incremental accuracy as a function of the log number of samples used to train the feature extractor.

Figure 12. Average incremental accuracy as a function of the initial accuracy. Linear regressions fitted on the average incremental
accuracies of four EFCIL algorithms obtained with models pre-trained on large external datasets (full, black line) or the first subset of
classes with or without synthetic augmentation (dashed, red line).



Figure 13. Pearson correlation coefficients for EFCIL experiments using vanilla supervised learning to train the feature extractor.



Figure 14. Pearson correlation coefficients for EFCIL experiments using tReX to train the feature extractor.



Figure 15. Pearson correlation coefficients for EFCIL experiments using a pre-trained baseline model as a feature extractor.
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