
Appendix Overview

This appendix is a supplement to the main paper. In
Sec. A, more details of the network structure of our pro-
posed ElasticLaneNet are illustrated. In Sec. B, more details
in the implementation of our ElasticLaneNet are provided.
Some specific comparisons on the three datasets that we use
are provided. Section C gives further information of the ex-
plicit implementation of ElasticLaneNetpw. Section D pro-
vides more results details and discussion, including the la-
bels of Fig. 7, more discussion of CULane’s results, and
the further improvement direction are illustrated here. Sec-
tion E shows some simple diagrams of the different types
of models mentioned in Sec. 2. In Sec. F, the settings of
other models in the comparison experiments on SDLane are
presented. The open source of this work is on https:
//github.com/yxfengl/ElasticLaneNet.

A. More Details of the Network Structure

This section provides more details of the network struc-
ture of our ElasticLaneNet shown in Fig. 2 in Sec. 3 in
the main text. In Fig. 2, the backbone consists of an En-
coder ResNet34 and a Feature Pyramid Network (FPN), in
which the down-sampling processes are indicated by the
downward red arrows, the up-sampling processes by the
green arrows, and the features concatenation processes by
the gray arrows; the main stream is from the backbone to the
ELMM, while the auxiliary steps include the Transformer
Bottleneck layer (TB), classification sub-network (CSN),
the range sub-network (RSN) and the auxiliary feature re-
finement (AFR). These auxiliary processes are framed (or
connected) by dotted lines (or arrows), which means they
can be removed.

After applying CSN and RSN (CRSN for short), in addi-
tion to using the loss functions Lexist (lane existence loss)
and Lrange (the binary-cross entropy loss), the outputs are
taken element-wise multiplication with the outputs from
ELMM, i.e. Pred1, to jointly train and learn the implicit
ELMs k

p1
’s, k = 1, 2, ..., N , with the size of N ⇥M ⇥ w.

In AFR, the auxiliary loss Laux is applied on Predi, namely
 k

pi
, i = 2, 3. The feature fusion (FF) in AFR module

means adopting convolution on the concatenation of F2 and
F3 with P1, the last layer from FPN, to obtain Pred1. F2

and F3 here are the features up-sampled from P2 and P3,
having the same size as P1, i.e., 40⇥ 100.

B. More About Implementation and Datasets

B.1. Parameters Setting

In the EIE loss, the hyper-parameter ↵ is set 0.5, and
� in H�(�) is set according to the sample number M , i.e.
M = 36 with � = 3 for SDLane and TuSimple, M = 18
with � = 5 for CULane.

During our training, the batch size is set to be 24 to 32,
the optimizer is AdamW [21], the learning rate is about
3 ⇥ 10�4 for both three datasets. The data augmentation
includes resize, flip, channel shuffle, random brightness or
saturation change, affine transformation, etc., same as the
setting in [37].

B.2. Data Preparation and Model Evaluation

In the TuSimple experiment, we perform Ground Truth
(GT) sorting (based on the lanes’ slope, same as [27, 37])
because the GT orders in TuSimple are random.

In the experiment of SDLane, we first reorganize the data
structure into CULane format [24], and use the same official
evaluation metrics as those in CULane to evaluate the per-
formance. The evaluation code of these two datasets is the
same as that in [27], which is a python re-implementation
of the official C++ code.

Before entering the neural network, the input images are
cropped at a fixed scale on top of the images that without
lane. The TuSimple and CULane are cropped according to
the prior work [37]. SDLane is cut to a size of 1920 ⇤ 660.

B.3. More Details on Datasets Description

In this paper, three datasets are applied for evaluation:
SDLane [12], CULane [24] and TuSimple [29].

SDLane [12] is a newly proposed dataset with up to 7
lanes and a variaty of high complexity of lane structures,
including intersections, Y-shape forks, confluence roads,
dense lanes, widely distributed curves, etc.

In CULane [24], the driving scenes are divided into nine
categories, which include several complex scenes such as
crowded, night, shadows and dazzling images. While any
drivable areas are considered to have lanes, e.g. complex
lane structures on the crossroad, while CULane regards the
crossroad as no lane (category “Cross”). In CULane, the
detection of crossroads detection almost becomes “Cross”
type identification. In addition, there is a class of images
in CULane, “No line”, where the lanes, i.e. the driving ar-
eas need to be detected correctly, unlike the “Cross” class,
which needs to be predicted to have no lane lines.

TuSimple [29] is a dataset of highways in good weather.
There are some curve lanes bending at the end portions, and
the curvature is much smaller than those in the SDLane.

The details of these datasets are summarized in Tab. 8.

C. More Details of ElasticLaneNet
pw

In this section, we describe more details of the ex-
plicit approach ElasticLaneNetpw, which is an alternative
EIE loss based implementation of ElasticLaneNet. Com-
pared to the implicit implementation of ElasticLaneNet pre-
sented in the main text, from which we obtains the lane
points from the zero contours of the output ELMs, the

EIE Loss

Linear Layers

Convolutional Layers

Input

Product

𝑯 ×𝑾

1 1 1 … 0

CSN

𝐍 ×𝐌× 𝟏

RSN

C2

C3

C4

𝑵×𝑴× 𝟏

𝟏𝟎× 𝟐𝟓

Encoder

𝑴 points

𝑵 lanes

GT
Pred

Figure a. Network architecture of ElasticLaneNetpw.

Datasets SDLane [12] CULane [24] TuSimple [29]

Scene Highway/Urban Highway/Urban Highway
Amount 43K 133.2K 13.2K

Resolution 1208⇥1920 590⇥1640 720⇥1280
Curves � 90% < 2% ⇠ 30%
Lanes 7 4 5
Forks p ⇥ ⇥

Crossroads p no lane ⇥

Table 8. Details of experiment datasets.

ElasticLaneNetpw predicts the x-coordinates of N lanes�
�1
p
, . . . ,�N

p

�
directly from the network, i.e.

�
x1
p
, . . . ,xN

p

�
,

where xk

p
=

⇣
x(k)
1 , x(k)

2 , . . . , x(k)
M

⌘>
; see Fig. a. The

ground truth lanes are �k

gt
, and coordinates on them are�

xk

gt
,yk

gt

�
, k = 1, . . . , N .

As mentioned in Sec. 3.2, the elastic interaction energy
(EIE) of two groups of pair-wise open curves is

E =
1

8⇡

Z

�

Z

�0

dl · dl0

r
, (5)

where vector dl represents line element on curves � with
tangent direction ⌧ , i.e. dl = ⌧dl, dl is the arc length, �0

denotes the curves with another parameter, i.e. � = � (s)
and �0 = � (s0), s (s0) is the parameter. The coefficient 1

8⇡
is set before the EIE so that the Fourier transform of EIE
has no coefficient: Leie =

P
m,n

p
m2 + n2 |dmn|2.

In order to apply an explicit method, the energy can be

rewritten using the relationship of dl = ⌧ �(�)dxdy, as

E (x, y) =
1

8⇡

Z

R2

�(�)dxdy

Z

R2

⌧ · ⌧ 0

r
� (�0) dx0dy0,

(6)
where �(·) is a Delta function, ⌧ and ⌧ 0 are unit tangent
vectors with different parameterized curve. In the imple-
mentation, a regularized delta function is required to smear
out the singularities.

The velocity field of � as well as the negative gradient
descent direction of the EIE is:

�t(x, y) = ��E

��

=

✓
1

4⇡

Z

R2

r · n�0

r3
�(�0)dx0dy0

◆
n,

(7)

where n�0 is the normal vector of parameterized curve
(x(s0), y(s0)), n is the unit normal vector of curve on (x, y)
over the whole image domain.

In Eq. (7), the � consists of the pair-wise ground truth
�gt and the prediction lane �p. The prediction lane �p has
opposite orientation to the ground truth �gt as mentioned
in Sec. 3.2. The velocity of the prediction is:

�pt(x, y)

= �
✓

1

4⇡

Z

R2

r

r3
· (n�

0
gt
�(�0

gt
)� ↵n�0

p
�(�0

p
))dx0dy0

◆
n�p ,

(8)
where ↵ is the same hyper-parameter as mentioned
in Eq. (2).

In order to simplify the calculation, the regular-
ized delta function chosen here is �� (x� xm) =

C
ro

w
d

N
ig

ht
Sh

ad
ow

N
o

lin
e

D
az

zl
e

C
ur

ve
Tu

Si
m

pl
e

(a) Ground Truth (b) Ours (c) Ground Truth (e) Ground Truth(d) Ours (f) Ours

Figure b. The Ground Truths of the predictions on TuSimple and CULane in Fig. 7.

⇢
1
2� , if x 2 U(xm,�)
0, if x /2 U(xm,�)

,m = 1, . . . ,M , where xm is

one of the x-coordinates on a lane. Therefore, the Delta
function applied here can be the derivative of a smooth
Heaviside function H�(·)� 0.5 mentioned in Sec. 3.1, sat-
isfying equation r(H�(�) � 0.5) = ���(�)n. Thus the
calculation of EIE loss becomes the same as Eqs. (1) and (2)
in Sec. 3.2.

The velocity field from Eq. (8) becomes:

v(x, y) = �pt(x, y)

= � 1

4⇡

Z

R2

r ·r (Gt � ↵ p) (x, y)

r3
dxdy,

(9)

which can be calculated efficiently via FFT, like Eq. (3).
We guess the degradation of ElasticLaneNetpw on

TuSimple and CULane, and the weak performance on
geometry-diverse dataset SDLane is because of the non-
smooth initial delta functions caused by the randomly ini-
tial x�sampling. On the contrary, implicit representation
of ELM can be immediately attracted to the map of ground
truth from a more general initial condition. This explicit
method may be able to obtain better approximation results
by improving the initial sampling distribution or choose a
smooth regularized delta function instead.

D. More Results Discussion

D.1. Ground Truth Supplement

In order to save space, the Ground Truths are not pro-
vided in the Fig. 7 in text. The supplement of the GT of the
results in Fig. 7 are in Fig. b.

D.2. Results Discussion on CULane

Some differences between our predictions and GT

In order to make further improvement on the dataset CU-
Lane, we compare our results and the GT via visualization.
A small portion of results in three of nine categories in CU-
Lane scenes are displayed; see Fig. c. The rows 1-2 are
“Night”, the rows 3-4 are “Cross”, the row 5 is “No line”,
and the row 6-7 include all types above.

The 1st and 5th rows are examples of some continuous
frames, our predictions are more consistent, but they are
different from the label-changing GT. Both ours and the GT
look acceptable and reasonable. Besides, the predicted road
at (f) in the 2nd row is narrower than the GT at (e). In fact,
there is no clear line on the road and it is difficult to visually
tell which ones (ours or GT) are better.

The images in the class of “Cross” (row3-4) are defined
as no lane in CULane. Our model predicts False Positive
(FP) results on “Cross” type in CULane sometimes, where
some of these images do have lanes and look similar to other
types of driving scene. It may because that the ELM trained
via EIE loss is sensitive to geometry features in the input
images, thus ElasticLaneNet can infer more geometry de-
tails related to the labeling patterns in the dataset. As a re-
sult, ElasticLaneNet can predict the lanes on the crossroad
even when no label is provided in CULane. In the jointly
training scheme of ElasticLaneNet, and the CSN module
is responsible to eliminate the FP in majority. Developing
a more suitable CSN module or scheme to distinguish the
“Cross” type image adapting to CULane may increase the
F1 score on it. On the other hand, the crossroads actually

M
ix

tu
re

N
o

lin
e

C
ro

ss
N

ig
ht

(a) Ground Truth (b) Ours (c) Ground Truth (d) Ours (e) Ground Truth (f) Ours

Figure c. More comparison of ElasticLaneNet on CULane dataset that are different from the ground truth according to different categories,
which are “Night” (row 1-2), “Cross” (row 3-4), “No line” (row 5) and the mixture of “Night”, “No line” and “Cross” (row 6-7).

have many complex lane structures (Y-shaped and merge
lanes, L-shape turns, crossing, etc.). When these lanes need
to be detected (such as in SDLane), our model is state-of-
the-art (SOTA).

The 2nd and 7th rows show some near frames and the
6th row is a mixture of “Night” and “No line”. It seems that
both our predictions and the GT are not very self-consistent
here. Part of the reasons might because the CULane cov-
ers a lot of scenes and many scenes are mixture types, and
manual lane marking is sometimes subjective, it is difficult
to formulate a very uniform labeling standard.

The situations above are some cases when our results
are different from the GT. As we can successfully predict
the lanes when the label of this image is not given (espe-
cially the “Cross” type in CULane), this phenomenon sug-
gests that our approach may have the application potential
in semi-supervised learning when the data is partially la-
beled, which requires the model to have a strong capabil-
ity on drawing conclusion on labeled data features and on
producing pseudo labels on unlabeled data, or to learn the
consistency features from data.

Results Discussion

As ElasticLaneNet is a geometry-flexible model using im-
plicit map (ELM) to represent lanes, it has large degrees
of freedom (DOF) to express shapes and structures of
lanes, but might bring some instability (mentioned in Sec.3
in [12]), especially when the simple structure (straight and
parallel) lanes are in majority. Besides, the thresholds of
computing TP in Acc in TuSimple (TPR on one lane >0.85)
and the IoU in CULane (IoU >0.5) allow some slightly
curved lanes to be predicted as straight lanes rather than

count them as FP [28], thus most of the images in CULane
and TuSimple can be handled by less DOF models when
evaluating on the official metrics above. For instance, the
3rd order polynomial x = ay3+by2+cy+d with more pa-
rameters and DOF can express more curves than the lower
order polynomial, but slightly trade off on TuSimple’s Acc
measure, the second-order polynomial scores higher than
the third-order one [28] without showing its superior on
curves. These might be part of the reasons that the ad-
vantage of our model is not significant on CULane which
contains less then 2% curves.

Failure Cases and Future Directions

In addition to the occasional lane existence error, other ex-
amples of instability caused by high DOF mentioned above
can be seen in the 2nd row in Fig. c, which are not as straight
as those in GT. Therefore, developing a more suitable CSN
module adapting to the CULane, and more robust training
scheme that further improve the stability of ELM are the
possible future directions.

E. Simple Diagrams of Different Types of Lane

Models

In this section, simple diagrams of different types of lane
representations mentioned in Sec. 2 are shown, including
segmentation-based, parameter-based, anchor-based, row-
wise based on coarse grid maps (CGM) methods; see
Fig. d. In (a), the coordinates of the left-most lane need to
be determined via dense post-processing from pixels mask
(the green one). Figures (b) and (d) show the lane point xi

of the left-most lane on the row i are calculated by param-

0.5

-0.5
0

x

𝝍 y

𝒙𝒊 = 𝐚𝐲𝒊
𝟐 + 𝒃𝒚𝒊 + 𝒄

crop

(a) Segmentation-based (b) Parameter-based (c) Anchor-based

(d) Row-wise on CGM

crop

M

(f) Implicit ELM

𝑬 𝒙𝒊 = ෍
𝒋

𝒋 ∙ 𝒑𝒊𝒋 𝝍 = 0

Anchor + Offsets

Figure d. The simple diagrams of the models in the Sec. 2.

eterizing the curve (e.g. 2nd order polynomial) and the row
expectation, respectively, where j represents the column in-
dex. In (c), the lane points of the left-most lane are located
by the sum of a chosen prior anchor and the predicted off-
sets according to it. In (f), the lane is on the zero-contour
on the proposed ELM.

F. Configuration Settings of Compared Models

In Sec. 4.3.1, we perform comparison study on highly
structure diverse lane data SDLane [12]. We re-train five
of the SOTA methods from the last two years to conver-
gence, including segmentation-based method LaneAF [1]
and row-wise methods UFLDv2 [26], CondLaneNet [19],
parameter-based method BezierLaneNet [5], anchor-based
method CLRNet [37], and compare the results with those
of our ElasticLaneNet; see Tab. 1 and Fig. 6. The pseudo
code of FPS comparison is shown in Fig. e

Figure e. Pseudocode of FPS comparison.

[1] is one of the latest segmentation-based methods with
cluster post-processing according to affinity field predic-
tions. Other setting remains the same as its original code
for CULane.

[26], an efficient row-wise method proposed in year

2022, is an improved version of [25], which applies hybrid
anchors of row and column to improve the predictions on
side lanes that mostly are perpendicular to the y-sampling
direction. The classification dimensions are set to be 100
on column anchors, 200 on row anchors, and the number of
anchors are 80 columns and 72 rows.

[19] is an effective and popular row-wise method. We
apply their RIM version designed for forks lanes. Other
settings remain the same as the provided code.

[5] is a recent parameter-based method, which has a sen-
sitive exploration capability on challenging lane cases. This
method requires reconstructing the label to be parametric
curves, e.g. bezier or polynomial curves. As SDLane has
a high proportion of curves and a variaty of lane structures,
we use 3 degree Bezier curves to reconstruct the label be-
fore training.

[37] is a state-of-the-art approach on TuSimple and CU-
Lane datasets using anchor-based model. We directly use
the setting of the CULane’s configuration file for SDLane,
which performs better than TuSimple’s configuration.

