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A. ROC Plots

Figure 1 and Figure 3 show the ROC plots for eight arti-

fact detection methods on each artifact tested based on the

Maxwell and BVI-Artifact database. The ROC (Receiver

Operating Characteristic) curves provide a visual represen-

tation of the performance of these methods, illustrating the

trade-off between the true positive rate (TPR) and the false

positive rate (FPR) across different threshold settings.

B. Visualization of the Guided Mask in ADFE

Figure 2 showcases the influence of the guided mask M

in the ADFE module, which does emphasize the regions

with visual artifacts.

C. Artifacts Synthesis Methods

Table 1 provides a summary of the synthesis methods

used to generate various video artifacts. In the Augmented

Database, different parameters were employed to produce

artifacts with four visibility levels.

D. Broader Impacts

The development and implementation of the MVAD

framework for detecting multiple visual artifacts in

streamed videos have the following impacts.

On the positive side, the MVAD system supports auto-

matic inspection of video content to identify visual arti-

facts, significantly reducing labor costs and increasing the

efficiency of quality control processes in video streaming

services. MVAD can also potential improve the quality

of streamed videos by incorporating with video enhance-

ment methods, leading to a better viewing experience for

end users.

The implementation of MVAD can also result in negative

impacts. The training and deployment of sophisticated ma-

chine learning models such as MVAD require substantial

computational resources, which can lead to increased en-

ergy consumption and negative environmental impact. Fur-

ther model complexity reduction can alleviate this issue,

and it remains our future work.

E. License of Code and Data

Table 2 summarizes the license associated with the code

and data used and generated in this work.



0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

motion_blur

MaxVQA
Ours
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

dark_scene

MaxVQA
Ours
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

graininess

MaxVQA
Ours
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

blockiness

VIDMAP
MaxVQA
Ours
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

spatial blur

EFENet
MLDBD
VIDMAP
MaxVQA
Ours
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

drop frame

Wolf
VIDMAP
MaxVQA
Ours
Random Classifier

Figure 1. The ROC curves for different artifact categories in the Maxwell [13] database.

Figure 2. Visualization of the guided mask M generated by the ADFE module.
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Figure 3. The ROC curves for different artifact categories in the BVI-Artifact [1] database.



Artifacts Synthesis Methods Levels Parameters

Aliasing Spatial re-sampling [2]

Very noticeable Sampling ratio=4

Noticeable Sampling ratio=3

Subtle Sampling ratio=2

Very subtle Sampling ratio=1.5

Banding Quantization [2]

Very noticeable Quantization ratio=5

Noticeable Quantization ratio=4

Subtle Quantization ratio=3

Very subtle Quantization ratio=2

Dark Scene Brightness/contrast adjustment [3]

Very noticeable Decrease ratio=4

Noticeable Decrease ratio=3

Subtle Decrease ratio=2

Very subtle Decrease ratio=1.5

Motion Blur Convolution (motion blur) [8]

Very noticeable Frame numbers=16

Noticeable Frame numbers=12

Subtle Frame numbers=8

Very subtle Frame numbers=4

Graininess Gaussian noise [2]

Very noticeable standard deviation=50

Noticeable standard deviation=25

Subtle standard deviation=10

Very subtle standard deviation=5

Blockiness JPEG compression [2]

Very noticeable Quantization parameter= 47

Noticeable Quantization parameter= 42

Subtle Quantization parameter= 37

Very subtle Quantization parameter= 32

Frame Drop Random frame dropping [12]

Very noticeable Frame length = 16

Noticeable Frame length = 12

Subtle Frame length = 8

Very subtle Frame length = 4

Spatial Blur Convolution (Gaussian blur) [2]

Very noticeable Kernel size=9

Noticeable Kernel size=7

Subtle Kernel size=5

Very subtle Kernel size=3

Transmission Error Packet loss and error concealment [2]

Very noticeable bitstream filter = 4M

Noticeable bitstream filter = 2M

Subtle bitstream filter = 1M

Very subtle bitstream filter = 0.5M

Black Screen Random black frames replacement

Very noticeable Frame length = 16

Noticeable Frame length = 12

Subtle Frame length = 8

Very subtle Frame length = 4

Table 1. Artifacts synthesis methods used for multiple artifacts generation.



Code/Data Size Dataset URL License/Terms of Use

Training Datasets

BVI-DVC [6] 800 https://fan- aaron- zhang.github.io/

BVI-DVC/

Academic research.

BVI-CC [4] 90 https://fan- aaron- zhang.github.io/

BVI-CC/

Academic research.

NFLX-public [5] 70 https://github.com/Netflix/vmaf/blob/

master/resource/doc/datasets.md

Academic research.

LIVE-HFR [7] 88 https://fan- aaron- zhang.github.io/

BVI-HFR/

Academic research.

Adobe240 [9] 133 https://www.cs.ubc.ca/labs/imager/tr/

2017/DeepVideoDeblurring/

MIT license.

Test Datasets

BVI-Artifact [1] 480 https://chenfeng- bristol.github.io/

BVI-Artefact/

Academic research.

Maxwell [13] 4,543 https : / / github . com / VQAssessment /

ExplainableVQA

MIT license.

Code of Benchmark Methods

MaxVQA [13] - https : / / github . com / VQAssessment /

ExplainableVQA

MIT license.

VIDMAP [2] - https://github.com/utlive/VIDMAP Academic research.

CAMBI [10] - https://github.com/Netflix/vmaf/blob/

master/resource/doc/cambi.md

BSD+Patent.

BBAND [11] - https : / / github . com / google / bband -

adaband

Apache-2.0 license.

EFENet [14] - https://github.com/wdzhao123/DENets No licence.

MLDBD [15] - https://github.com/wdzhao123/MLDBD No licence.

Wolf el at. [12] - https://its.ntia.gov/umbraco/surface/

download/publication?reportNumber=TR-

09-456.pdf

Academic research.

Code and Data generated in this work

MVAD - https://chenfeng- bristol.github.io/

MVAD/

CC-BY-4.0

Training data [6] 50,800 https://chenfeng- bristol.github.io/

MVAD/

Academic research.

Table 2. License information for the Code and datasets used and generated in this work.
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