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1. Parameters for training and generation
For training the face classifier, we use the Adaface train-

ing pipeline [14]. We apply the same augmentations, crop,
and low-resolution augmentations, for all training sets, with
an exception on DigiFace , where we also use the augmen-
tation of the authors to reach optimal performances. We
perform the training on 4 GPUs with a batch size of 256
(i.e. 64 per GPU), the optimizer is the standard SGD with
a learning rate of 0.1 and a momentum of 0.9. We use as a
scheduler a multi-step learning rate decay whose milestones
are the epochs 12,20,24 and the decay coefficient is 0.1. The
training loss is that of Adaface [14]. The margin parameter
m is set to 0.4, and the control concentration constant h to
0.333 as recommended by [14]. On each training set, the
training lasts 60 epochs.

For generating the DCFACE set and its variants, we use
the generation pipeline of [15]. We impose the Xid image
and the Xsty to be of the same demographic group as we
found that mismatching is likely to induce non-convergence
of the resnet50 model when training on the resulting dataset
(in particular when mismatching in gender). Randomly
sampling the style image within the CASIA dataset thus
results in a non-decreasing loss of the ResNet network.
Within the code of [15], there is a sampling strategy we
haven’t tested: combining DDPM images with the closer
CASIA faces. This approach was and still is, unfortunately,
non-usable due to incomplete critical files 1 Moreover, this
strategy is not mentioned in the original paper and, since it
combines similar CASIA and DDPM faces in a resnet100
latent space, it seems to be in contradiction with what is
stated within the ID Image Sampling subsection of [15]. We

1The provided center ir 101 adaface webface4m faces webface
112x112.pth file doesn’t have a required ”similarity df” field. Also,

the dcface 3x3.ckpt file doesn’t seem to store the following property:
recognition model.center.weight.data

thus chose to ignore this strategy, our study being primarily
an analysis of fairness and improvement research in this re-
gard.

For all methods, similarly to what the original paper did,
we introduce variability within the considered DDPM Xid

pictures by using a similar Feval model as in [15]. How-
ever, one should be aware that the Cosine Similarity Thresh-
old might vary depending on the training of the Feval net-
work. We used the network trained on [31] provided by
the Adaface Github repository and found 0.6 as an effective
threshold to filter similar images. We also get rid of faces
wearing glasses with the following solution [4].

2. Performance in Accuracy on other sets

Verif.
dataset

Real dataset Synthetic datasets
CASIA BUPT SynFace DigiFace DCFace DCFace + Cge DCFace + Call

LFW 99.46 99.55 87.28 94.88 98.13 98.24 98.25
CFP-FP 94.87 90.03 67.01 83.4 80.92 80.03 81.28
CPLFW 90.35 85.98 64.91 76.61 79.94 79.32 80.17
AgeDB 94.95 94.3 61.78 78.26 87.96 86.77 86.53
CALFW 93.78 94.38 73.53 79.78 90.39 90.6 90.03

RFW 86.38 90.35 64.3 72.73 76.95 78.51 79.5
FAVCI2D 82.77 81.81 61.19 67.17 72.84 73.31 73.73

BFW 89.3 92.48 70.08 77.27 84.47 85.45 88.53
AVG 91.48 91.11 68.76 78.76 83.95 84.03 84.75

Table 1. Raw Accuracy obtained for the different used sets on
8 datasets including five commonly used datasets in addition to
BFW, RFW and FAVCI2D

In addition to FAVCI2D , BFW, and RFW, we report in
Table 1 the raw accuracy results on 5 common evaluation
sets used in prior work on the FR task [2, 14, 15, 20] : (1)
Labeled Faces in the Wild (LFW) [11], the reference dataset
for the task (2) CALFW [29], a version of LFWwith a larger
age variability, (3) CPLFW [28], a version of LFWwith
pose variability, (4) AgeDB [19], a dataset designed for
maximizing age variability, and (5) CFP-FP [22] that is de-
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signed for pose variability.
Raw accuracy differs from the micro accuracy reported

on the paper. Micro accuracy gives the same importance to
each demographic segment, whereas raw accuracy performs
a simple mean across all images, without any distinction.

Table 1 confirms the performance gain of DCFace +
Call over the original generation pipeline: The genera-
tion pipeline slightly improves accuracy for four of these
datasets (+0.12, +0.36, +0.23, and +0.89 for LFW, CFP-
FP, CPLFW, and FAVCI2D ) and slightly degrades perfor-
mance for the other two (-1.43 and -0.36 points for Age-DB
and CALFW). On the balanced sets, (i.e. RFW and BFW)
the pipeline induces important gains in accuracy (+2.55 for
RFW and +4.06 for BFW).

3. Bias Mitigation techniques details
We provide implementation details about the baselines,

re-sampling, and loss weighting used to compare with our
approach.

3.1. Re-sampling

Data re-sampling balances class distribution within train-
ing data by employing strategies other than the default
uniform sampling. These strategies can consist of over-
sampling the data from the under-represented classes and/or
under-sampling majority classes [13, 23].

Oversampling [1,3,16,30] increases the number of sam-
ples by replicating existing data. However, duplicating data
by sampling the several times can lead to over-fitting. On
tabular data, interpolating techniques such as SMOTE and
its variants [5, 6, 9] can be used in order to tackle this over-
fitting issue. Still, such approaches are not trivial and more
costly for non-tabular data such as images.

Undersampling, on the other hand, consists in the re-
duction of the majority classes so that their representativ-
ity matches the underrepresented classes. [17, 18, 24]. The
main drawback of such an approach is that it results in un-
used data, which is not an optimal setup.

Here we use Re-Sampling as a baseline for bias mit-
igation by combining over-sampling and under-sampling.
Specifically, for each attribute a with values aj , we count
nj , the number of images with value aj . We then assign
a weight wj = 1/nj to each image sharing value aj . For
each image xi, we compute its weight wi as the product
of the weights of all attributes associated with the image.
The sampling probability for each image is calculated as
pi = wi/

∑
k wk. At each beginning of a training epoch,

we sample N images according to the probability distribu-
tion {pi}, where N is the size of the original dataset.

Note that this approach, coupled with the set of random
image augmentations used during training, should mitigate
to a certain extent the mentioned limitations of both over-
sampling and under-sampling.

3.2. Loss Weighting

Loss weighting tries to adapt the loss scale depending
of the characteristics of the sample. This weighting can
be linked to the difficulty of the sample as done implic-
itly by the Adaface Loss [14], which can be induced by the
class imbalance or in our use case, by the corresponding
attributes representativity. A common way to weight the
loss is to use the same weights computed in subsection 3.1,
i.e. using the invert of the frequency/count [8, 10, 26]. We
thus use the same weights wi for weighting the loss. The
weights are normalized batch-wise to ensure the same order
of gradient amplitude. The loss of the batch is defined as:

L(x1, ..., xK) =

∑
k wkL(xk)∑

k wk
(1)

where L(xk) is the sample-wise loss for image xi.

4. Diagnostics on the regressions
To be valid, a linear regression needs to satisfy a few

properties, mainly:

• Correct specification: The model is correctly specified,
meaning all relevant variables are included, and no ir-
relevant variables are included.

• Normal distribution of errors: While not strictly nec-
essary for estimation, the assumption that errors are
normally distributed allows for valid hypothesis test-
ing and the construction of confidence intervals.

• Zero conditional mean (exogeneity): The expected
value of the error term is zero for any given value of
the independent variables. This implies that the inde-
pendent variables are uncorrelated with the error term.

• Homoscedasticity: The variance of the error term is
constant across all levels of the independent variables.

For a generalized linear model, such as the logit model,
these assumptions are not possible to verify strictly due
to the non-linearity of the model. Therefore, we use the
DHARMa package [7] in R to run diagnostics on our mod-
els and verify the validity of our regressions. DHARMa
uses simulation-based residuals. It creates new data from
the fitted model and then calculates the empirical cumula-
tive density function for each observation. This approach
allows for standardized residual calculation even for non-
normal distributions like in logit models.

The package provides several diagnostic plots:

• QQ-plot of residuals: Checks for overall deviations
from the expected distribution (Figure 1-left).

• Residual vs. predicted plot: Helps detect heteroscedas-
ticity and nonlinearity (Figure 1-right).



Figure 1. QQ-plot of residuals and Residual vs. predicted plot:
logit model is adapted and log-odds are linear in the variables.

Figure 2. Residual vs. predictor plots: exogeneity is verified.

• Residual vs. predictor plots: Useful for identifying
problems with specific predictors (similar to exogene-
ity) (Figure 2).

• Overdispersion Test: helps to identify if there’s more
variation in the data than expected under the binomial
distribution (Figure 3).

• Zero-inflation Test: check for an excess of zeros or
ones (Figure 4).

Here, we will show the diagnostics only for the model
DCFace + Call on RFW, but diagnostics graphs are constant
across all tested models on both test datasets.

5. Statistical Analysis on FAVCI2D
We present here the results of our statistical analysis on

FAVCI2D . Be aware that while the metadata of this dataset
contains gender information, it doesn’t provide ethnicity.
We infer it using FairFace. We consider the prediction of
FairFace robust enough to compute macro metrics such as
the Diversity metric of the main paper however for a finer
study such as ours, it might introduce some uncertainty due
to model prediction error (Table 2). With that in mind, we

Figure 3. Overdispersion Test: Correct Specification and no auto-
correlation.

Figure 4. Zero-inflation Test: the model correctly predicts the
probability of the outcome.

still get consistent results for the effects of demographic at-
tributes on the models (Figure 5). Our approach shows even
more insensitiveness on FAVCI2D than BUPT, by contrast
to the results obtained on RFW. The increase of the BUPT-
trained model’s sensitivity with regard to the inferred labels
on FAVCI2D might come from the dataset balancing done
on the same labeling system as RFW. Results obtained re-
garding the TMR (Figure 6) and FMR are coherent with the
idea that models tend to predict positive outcomes for cer-
tain protected ethnical sub-groups. They thus have a high
recall for these groups (high TMR and high FMR). With
the gender provided by the metadata, we can thus confirm
the impact of the balancing on fairness relative to this at-
tribute. While most of the models are sensitive to gender,
the model trained on DCFace + Call DCFace has close to
no sensitivity for this attribute, both being close to perfectly
balanced concerning gender.

Figure 7 shows the result of ANOVA on the distances in
the latent space of the FAVCI2D dataset, both on the pos-
itive and negative pairs. The results are coherent with the
ANOVA computed on RFW. It furthermore highlights the
sensitivity of some models’ latent space to gender, while
our balancing approach allows for more insensitivity about



demographic attributes.

6. Statistical Analysis on BFW
To tackle the issue of the lack of metadata, in addition

to BFW, other alternatives exist such as BFW [21] and De-
mogPairs [12]. While these datasets provide some ground-
truth metadata, they are composed of significantly fewer
identities compared to datasets like FAVCI2D or RFW.
This is a limitation of our analysis: Having too few iden-
tities might bring instability within Anova or marginal ef-
fect studies due to redundancy. We report the results ob-
tained with BFW on as similar number of pairs as RFW and
FAVCI2D (24k), meaning every single identity appears in
around 30 evaluated pairs. The impact of the number of
identities within benchmarking should be studied in future
works as this might affect the obtained analysis of perfor-
mance and fairness.

Figure 10 shows the ANOVA analysis performed on
BFW. As before, on the negative image pairs, our condi-
tional generation methods greatly reduces the variance ex-
plained by the sensitive attributes.

Figures 9 and 8 present the marginal effects of the at-
tributes, respectively, on TMR and FMR. As we see, the
fairness gain mostly comes from a fairer FMR between eth-
nicities: the FMR of the Asian and Black subgroups are
8 and 12 points higher than for the White subgroup in the
original DCFace , and become non-significant with DCFace
+ Call . For the TMR, however, just as for RFW, becomes
slightly more unfair between ethnicities. Still, as shown in
Table 2 of the paper, on all fairness metrics except EOR, our
method outperforms the other synthetic data approaches on
BFW.



ethnicity Black White East-Asian Indian Latino-Hispanic Middle-Eastern South-Asian

Prediction accuracy 0.863 0.777 0.784 0.724 0.581 0.631 0.641

Table 2. FairFace model accuracy when inferring on the Fairface validation set. Available Metadata only provides the race7 variable ground
truth while we are considering the race variable (whose values are White, Black, Asian, and Indian). The robustness of the model for this
latter should be thus greater.
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Figure 5. Marginal effect on FMR (lower is better) for each method compared to the unprotected group. Analysis done on FAVCI2D
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Figure 6. Marginal effect on TMR (lower in absolute is better) for each method compared to the unprotected group. Analysis done on
FAVCI2D
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Figure 7. ANOVA results on FAVCI2D : total height corresponds to R2, the explained variance by the variables. Each bar is decomposed
into multiple η2, i.e. the individual contributions to the variance
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Figure 8. Marginal effect on FMR (lower is better) for each method compared to the unprotected group. Analysis done on BFW

BU
PT

CA
SIA

CA
SIA

+S all
CA

SIA
+W all

Sy
nF

ac
e

Digi
Fac

e
DCF

ac
e

DCF
ac

e+S all
DCF

ac
e+W all

DCF
ac

e+C all
 (o

ur
s)

15
10

5
0
5

10
15

Ef
fe

ct

Effect of ethnicity compared to the 'White' subgroup

BU
PT

CA
SIA

CA
SIA

+S all

CA
SIA

+W all
Sy

nF
ac

e
Digi

Fac
e

DCF
ac

e
DCF

ac
e+S all

DCF
ac

e+W all

DCF
ac

e+C all
 (o

ur
s)

15
10

5
0
5

10
15

Effect of gender compared to
 the 'Male' subgroup

Variability in TMR on BFW

Asian
Black
Indian

Female

Figure 9. Marginal effect on TMR (lower in absolute is better) for each method compared to the unprotected group. Analysis done on
BFW
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Figure 10. ANOVA results on BFW: total height corresponds to R2, the explained variance by the variables. Each bar is decomposed into
multiple η2, i.e. the individual contributions to the variance

BU
PT

CA
SIA

CA
SIA

+S all
CA

SIA
+W all

Sy
nF

ac
e

Digi
Fac

e
DCF

ac
e

DCF
ac

e+S all
DCF

ac
e+W all

DCF
ac

e+C all
 (o

ur
s)

10

5

0

5

10

15

20

Ef
fe

ct

Effect of ethnicity compared to the 'Caucasian' subgroup

BU
PT

CA
SIA

CA
SIA

+S all

CA
SIA

+W all
Sy

nF
ac

e
Digi

Fac
e

DCF
ac

e
DCF

ac
e+S all

DCF
ac

e+W all

DCF
ac

e+C all
 (o

ur
s)

10

5

0

5

10

15

20

Effect of gender compared to
 the 'Male' subgroup

Asian
African
Indian

Female

Variability in TMR on RFW
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7. Datasets Images examples

(a) Examples of images within our proposed DCFace + Call approach.
We notice a greater diversity of images.

(b) Examples of images generated with the original DCFace [15]
pipeline

(c) Examples of images generated with the SynFace pipeline [20] (d) Examples of images within the DigiFace dataset [2]



(e) Examples of images within the CASIA dataset [27] (f) Examples of images within the BUPT dataset [25]
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