
8. GAUDA - Supplementary

This chapter provides additional supplementary informa-
tion for GAUDA: Generative Adaptive Uncertainty-guided
Diffusion-based Augmentation for Surgical Segmentation.

8.1. GAUDA Pseudocode

A pseudocode formulation for training Bayesian down-
stream task models with GAUDA can be found in Figure
9. GAUDA serves as a training scheme with flexible op-
tions for the downstream task, downstream model and un-
certainty estimation method.

Figure 9. GAUDA Pseudocode.

8.2. Uncertainty-based Sampling Versus Score-
based Sampling

In this section, we analyse the effect of the predictive
epistemic uncertainty as quantity for re-defining sampling
weights in adaptive sampling. For that purpose, we de-
fine a simplified classification problem of two-dimensional
points. As visualised in the top left plot of Figure 10, the
data consists of two noisy classes depending on their centre
distance (red and blue). The data shows a significant imbal-
ance in the number of samples per class.

We deploy a simple neural network classifier with two
fully connected layers, an intermediate feature size of 10
nodes and a ReLU activation + dropout with 50% chance.
To obtain UE, we build an ensemble of 20 of such models.

We compare two training schemes to investigate the ef-
fect of different quantities for redefining sample weights.
First, we use the validation accuracy analogously to the
original AS formulation. Second, we use the epistemic un-
certainty from the variance of the ensemble prediction.

As visualised in the top right and bottom plots of Figure
10, sampling based on UE yields faster convergence and
improved generalisation capabilities, ultimately resulting in
a testing accuracy improved by 6.1%.
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Figure 10. Uncertainty- Versus Score-based Sampling.

8.3. Pre-Train Augmentation Versus Online Aug-
mentation

Adaptive augmentation of training data leads to a change
in the data distribution, favouring underrepresented data
points more and more during training. To demonstrate this,
we first sample a fixed amount of additional samples of our
simplified experimental data (doubling the number of ex-
amples). Second, we train the deep ensemble from Section
8.2 with the GAUDA scheme, adaptively augmenting the
data based on the predictive epistemic uncertainty (again
doubling the number of examples).
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Figure 11. Pre-train Versus Online Augmentation.

Figure 11 shows adaptive online augmentation yields a
significantly higher percentage of samples of the limited
blue class compared to pre-train random augmentation.

8.4. Additional Segmentation Scores

The sample-wise and mean DICE and Average Precision
(AP) scores for the surgical segmentation downstream task
are visualised in Figure 12.



0.6

0.7

0.8

0.9

1.0

Cholecseg8k DICE Scores

0.6

0.7

0.8

0.9

1.0

CaDISv2 Se ng II DICE Scores

0.6

0.7

0.8

0.9

1.0

CholecSeg8k AP Scores

0.6

0.7

0.8

0.9

1.0

CaDISv2 Se ng II AP Scores

PHiSeg

PHiSeg aug

PHiSeg AS

PHiSeg AS aug

PHiSeg GAUDA

PHiSeg GAUDA aug

UNet Ensemble

UNet Ensemble aug

UNet Ensemble AS

UNet Ensemble AS aug

UNet Ensemble GAUDA

UNet Ensemble GAUDA aug

Figure 12. Downstream DICE and AP Results.

8.5. Failure Cases

Figure 13 displays examples of synthetic (image, mask)
pairs with improvable quality. Notably, failures can occur
in the form of noisy tool segmentation masks (left column),
wrongly allocated or missing labels (middle column) and
small inconsistent regions (right column). Yet, erroneous
regions are small and can potentially be filtered out or im-
proved with error propagation reduction mechanisms [43].
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Figure 13. Erroneous Synthetic Samples.

8.6. Comparison to GAN-based Approaches

In Table 5, we compare the quantitative performance of
our LDM (ω = 3.0) to DatasetGAN [45]. The DatasetGAN
implementation is based on an improved version from Edit-
GAN [25]. It uses StyleGAN2 [18] with ’config-f’, trained
on 2e6 random examples of both datasets, which was suf-
ficient for convergence. For training the interpreter model,

we used 50 annotated (image, mask) pairs and early stop-
ping based on the loss progress.

Method Dataset FID (↓) KID (↓) RO IoU (↑) SO IoU (↑)
LDM (ours) CaDISv2 39.44 0.033 ± 0.004 0.755 0.635

DatasetGAN [45] CaDISv2 66.99 0.057 ± 0.009 0.281 0.213
LDM (ours) CholecSeg8k 56.80 0.041 ± 0.005 0.731 0.742

DatasetGAN [45] CholecSeg8k 65.40 0.042 ± 0.007 0.114 0.145

Table 5. Quantiative Comparison against DatasetGAN.

Notably, our generative model surpasses DatasetGAN in
terms of fidelity, but especially in RO and SO scores, indi-
cating a superior semantic alignment between images and
masks of generated pairs.

8.7. Computational and Resource Efficiency

Table 6 lists the number of training examples, the total
training time and inference speed of each component of our
proposed method, each component of DatasetGAN [45], as
well as each training scheme. The reported numbers are
averaged over datasets and downstream task models. The
inference speed is reported for a single sample.

Method / Component Num. Examples Training Time Inference Speed
Image VQ-GAN 1.2e6 11.4h 4ms
Mask VQ-GAN 1.2e6 20.8h 5ms

LDM 2.0e7 125.1h 36,891ms
Full Model (ours) - - 36,895ms

StyleGAN2 2.0e6 36.9h 290ms
StyleGAN Encoder 6.0e5 7.1h 9ms

DatasetGAN ≤ 4.0e6 0.25h 380ms
Downstream Default 2.5e6 15.3h 8ms
Adaptive Sampling 2.5e6 18.3h 8ms

GAUDA 2.5e6 22.6h 8ms

Table 6. Training Times and Inference Speed.


