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Image-Based Rigid Slice-to-Volume Registration

1. Dataset curation details

1.1. Details on volumetric data sourcing

Our dataset is curated from real-world volumetric data,

published in various fields of academic research. In Tab. 1

we provide details such as categorization, application do-

main or context, primary instrument of measurement, and

licensing. We also provide the count of unique volumes we

were able to source, as well as the count of the volumes we

kept after sub-selection.

1.2. Use of personal data and human subjects

Since ”Needles & Haystacks” includes two sources of

volumetric data from human subjects, we investigate the

ethics compliance of the original published works. Impor-

tantly, both medical datasets [9, 27] have obtained corre-

sponding ethical waivers, and have taken material steps to

anonymize the data by removing personally identifiable fea-

tures. AMOS [9] reports approval by the Research Ethics

Committees of Longgang District People’s Hospital (refer-

ence number: 2021077), as well as Longgang District Cen-

tral Hospital (reference number: 2021ECJ012). TotalSeg-

mentator [27] reports approval by The Ethics Committee

Northwest and Central Switzerland (EKNZ BASEC Req-

2022–00495).

1.3. Definition of Asubvolume

To sample a subvolume, we choose a translation TO to

some origin point O, around which we choose a rotation

RO. Then, we choose offset TV and a non-uniform scaling

factor SV to sample and rescale a parallelepiped centered at

O into a cubic shape of D×D×D voxels. We express this

transformation using an affine matrix Asubvolume

Asubvolume = SV T
−1
V TOROT

−1
O , (1)

the inverse of which allows to sample subvolume V =
Voriginal

(

A−1
subvolume

)

from the original volume Voriginal.

1.4. Visualizations of sampled registration tasks

We provide further illustrations for the registration tasks

within our dataset, sampled from each unique source and

organized by category: ”Materials Characterization” (see

Fig. 4), ”Life Sciences” (see Fig. 5), and ”Paleo-, Archeo-

and Anthropology” (see Fig. 6).

1.5. Curation bias and benchmark ranking

The representative strength of methodology ranking in

our benchmark hinges on the implicit factors such as the

dataset composition, the size of the registration search

space, as well as the choice of parameters for registration

task validation. Limited by the data availability within pub-

lished academic research, our approach is inherently biased

to unintentionally emphasize some distributions of volu-

metric data, together with their characteristics: from favor-

able, well-structured and near-noiseless, to highly challeng-

ing, repetitive, noisy, thin-structured and disjoint. There-

fore, an alternative approach to dataset composition, even

if guided by the same principles, may well emphasize dif-

ferent strengths and weaknesses in S2V algorithms, which

would lead to some variability in the rankings. Nonetheless,

it is unlikely that a significantly different methodology rank-

ing can be achieved in the general-purpose setting. Note

that this would require that, at the same time, a sufficiently

large set of application domains with distinct characteris-

tics was overlooked during the curation of this dataset, and

that the challenges of such data were sufficiently distinct to

upend the major trends in algorithm performance.

2. LoFTR-S2V implementation details

2.1. Architecture of LoFTR­S2V

While we provide a brief overview of architectural adap-

tations that allow us to apply the detector-free image match-

ing approach from LoFTR [25] in the main paper, the lim-

itations on paper length prevent us from going into a more

exhaustive discussion. Therefore, we discuss some addi-

tional details in this subsection. We assume at least a brief

familiarity of the reader with [25], and focus our discus-

sion only on the adaptations of the original approach. The

overview is presented in Fig. 1.

Feature extraction. While the original LoFTR is trained

on co-visible pairs of 2D images, LoFTR-S2V must accom-



Table 1. Sources of data with counts of available (Navailable) and kept (Nkept) compatible 3D volumes.

Source Category Application Instrument Navailable Nkept❴ License

TotalSegmentator [27] Life Sciences Medical imaging CT, MRI 926 343 CC BY 4.0

AMOS [9] Life Sciences Medical imaging CT, MRI 904 298 CC BY 4.0

Gibson et al., 2018 [4] Paleo-, Archeo- & Anthropology Cultural heritage µ-CT 125 125 CC0 1.0

COAL-2 [29] Materials Characterization Carbon sequestration µ-CT 2420 98 CC BY 4.0

Soil Structure Library [28] Materials Characterization Geology/soil studies segmented µ-CT 654 80 CC BY 4.0

Saur, Aubourg & Moonen, 2021 [21] Materials Characterization Geology/rock studies µ-CT 256 77 ODC-BY

µ-CT samples of concrete [5, 11, 18, 23] Materials Characterization Materials science/concretes µ-CT 277 77 CC BY 4.0

Mehdikhani et al., 2019 [16] Materials Characterization Materials science/polymers µ-CT 175 72 CC BY 4.0

Quenum, Zenyuk & Ushizima, 2023 [20] Materials Characterization Battery research µ-CT 120 64 CC0 1.0

MRCCM [1] Materials Characterization Geology/rock studies µ-CT 99 60 ODC-BY

11 Sandstones [17] Materials Characterization Geology/rock studies µ-CT 88 56 ODC-BY

ICL µ-CT Images and Networks [2, 3] Materials Characterization Geology/rock studies segmented µ-CT 83 54 CC BY 4.0

Iglauer et al., 2022 [8] Materials Characterization Geology µ-CT 24 24 OGL

Stull et al., 2017 [24] Paleo-, Archeo- & Anthropology Paleontology µ-CT 23 23 CC0 1.0

µ-CT test samples: a fly, a walnut [15] Life Sciences Lab samples µ-CT 10 10 CC BY 4.0

µ-CT test samples: a dowel, a pawn [15] Paleo-, Archeo- & Anthropology Lab samples µ-CT 10 10 CC BY 4.0

Semple, Peakall & Tatarnic, 2020 [22] Life Sciences Zoology/morphology µ-CT 8 8 CC0 1.0

Lutter, 2023 [14] Materials Characterization Lab samples nano-CT 4 4 CC BY 4.0

Hoffmann Barfod et al., 2016 [7] Paleo-, Archeo- & Anthropology Cultural heritage µ-CT 4 4 CC BY 4.0

Kolibáč et al., 2023 [12] Life Sciences Systematics & phylogeny µ-CT 4 4 CC BY 4.0

Pritchard & Nesbitt, 2017 [19] Paleo-, Archeo- & Anthropology Archeology µ-CT 4 4 CC0 1.0

Kairišs & Bukejs, 2021 [10] Life Sciences Paleontology µ-CT 3 3 CC BY 4.0
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Figure 1. LoFTR [25] architecture adapted for S2V registration. Non-differentiable operations in dashed.

modate for matching between 2D images and 3D volumes.

This requires that two separate feature extraction modules,

one a 2D and one a 3D, are used instead of a single 2D con-

volutional neural network (CNN) based on Feature Pyra-

mid Network (FPN) [13] and ResNet-18 [6]. Keeping the

original 2D ResNetFPN unchanged, we also define a 3D

ResNetFPN for 3D feature extraction. To this end, we sub-

stitute the 2D operations with their 3D counterparts, and

keep to the same layer topology as the original. Both FPNs

extract 3-level features, from which the coarsest-level fea-

tures, correspondingly F 2D
c and F 3D

c , form the basis for

coarse matching, while the fine level features F 2D
f and F 3D

f

are used for refinement of coarse-level matches.

Positional encoding. To enhance the extracted features

with positional dependence, the original approach calls for

addition of position encoding in sinusoidal format. While

the definition of positional encoding remains identical in the

2D case, a 3D formulation is required for 3D features. We

define it as follows:

PE
i
x,y,z = f(x, y, z)i :=




















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















sin(ωk · x), i = 6k

cos(ωk · x), i = 6k + 1

sin(ωk · y), i = 6k + 2

cos(ωk · y), i = 6k + 3

sin(ωk · z), i = 6k + 4

cos(ωk · z), i = 6k + 5

,

(2)

where ωk = 1
100003k/d)

, d is the number of channels, and

i is an index for feature channels, similar to the origi-
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Figure 2. PDF and CDF visualizations for distributions of angular error, as well as feature matching statistics on the test set. Highlighted

in red are the average count of inlier (11.65) and total predicted (74.11) matches, average inlier rate (13.21%).

nal formulation. The position-dependent features F 2D
c =

F 2D
c +PE i

x,y and F 3D
c = F 3D

c +PE i
x,y,z are then flattened

and propagated as 1D feature vectors through the original

LoFTR module for coarse-level matching. Note that LoFTR

module is compatible with differently-sized feature vectors,

and needs no adaptations to accommodate for imbalance in

sizes between F 2D
c and F 3D

c .

Coarse-level matching & supervision. Transformed

features F 2D−tr
c and F 3D−tr

c are matched identically to

the 2D-2D case, with the use of the dual-softmax operator

and mutual nearest neighbor search. Importantly, coarse-

level supervision requires a ground-truth matrix of corre-

spondences Mgt
c at 1/8th of the original resolution. While

the original recovers these correspondences using both cam-

era poses and depths, for S2V registration Mgt
c is recov-

ered trivially as a mutual nearest neighbor between the

coarse D×D grid of I (grid vertices initialized at voxel

centers), transformed with ground-truth Â(R̂, T̂ ), and the

coarse D×D×D grid of V . Coarse-level matching com-

pletes with a selection of a set of good matches Mc, for

which, given the much higher ambiguity of S2V registra-

tion, we lower the confidence threshold θc to 0.001.

Fine-level matching & supervision. The original ap-

proach samples support windows of size w×w from fine-

level 2D features to refine select coarse matches to subpixel-

accurate coordinates. Importantly, the search for the sub-

pixel location takes place in only one of the windows, and

the central location of the other serves as the reference

point. During refinement, the match is therefore fixed in the

space of one image, and moving in the space of the other.

The nuance of replicating such refinement between 2D and

3D spaces, is that the extracted correspondences must al-

ways be refined in 3D space. We sample the 2D windows

w×w from the F 2D
f at corresponding positions, enhance

them with 2D positional encoding, flatten and propagate

them through the LoFTR module to get F 2D−W−tr
f . Simi-

larly, 3D windows w×w×w are sampled from F 3D
f , encoded

and transformed to recover F 3D−W−tr
f . Both F 2D−W−tr

f

and F 3D−W−tr
f are reshaped into their corresponding 2D

w×w and 3D w×w×w shapes. Now, we sample F 2D−W−tr
f

at its central position (w/2,w/2), and correlate it with all

positions within F 3D−W−tr
f to produce a scalar 3D volume

of shape w×w×w. Similar to the original approach, we

propagate the produced correlation volume through a soft-

argmax, and compute a 3D spatial expectation as the cen-

troid of the input tensor in spatial dimensions. At inference

time, an argmax operator on the output returns the refined

endpoint of the correspondence in the 3D space. This way

we acquire the final set of fine matches Mf .

2.2. Training of LoFTR­S2V

LoFTR-S2V is trained from scratch on our entire dataset.

We train on 24 GPUs1 in batches of 24, otherwise keeping

the training schedule similar to the original. We train with

Adam-W and weight decay of 0.1 with gradient clipping,

initial learning rate set to 0.006, and a warm up for 3 epochs

from 0.1 of the initial learning rate, which we decay every

3 epochs by the factor of 0.5. During training, we solve for

the pose with Least-Squares [26] and observe the training

metrics for the entire validation set, until convergence after

14 epochs, in approx. 192 hours.

2.3. Visualizations of LoFTR­S2V results

In the main paper, we report on the summary S2V reg-

istration performance of LoFTR-S2V, as well as on its im-

provement after refinement with local optimization (LO).

To evaluate solutions we use angular error, which we ag-

gregate into mean Average Accuracy (mAA) metric. Here,

we provide extended details on the distribution of angular

error for LoFTR-S2V on the entire test set, before refine-

ment with LO. Similar analysis is provided for all new sub-

missions to the benchmark. In Fig. 2 we visualize the dis-

tribution of angular errors, as well as the distributions of

matching statistics, such as the counts of inlier and total

correspondences, and inlier rates.

Finally, to offer a better qualitative understanding of the

results with LoFTR-S2V, we provide additional visualiza-

tion of registration results on the validation set in Fig. 3.

For balanced representation, we demonstrate a wide range

of results, from lowest to highest possible angular errors.

1NVIDIA GeForce RTX 2080 Ti
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Figure 3. Qualitative results on the validation set for LoFTR-S2V. Ground-truth in red, solution in yellow. True inlier matches in blue, red

points are outlier endpoints. Samples sorted left to right by increasing angular error, top to bottom by decreasing count of inlier matches.
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Figure 4. Registration tasks from ”Materials Characterization”

category. Sourced from geological studies of rocks (a,f,h,i) and

soils (g), carbon storage in coal (c), studies of concretes (k) and

polymers (b) in materials science, battery research (e) and carbon

sequestration (d).
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Figure 5. Registration tasks from ”Life Sciences” category.

Sourced from medical imaging data (a,b), lab samples (c), and

biological studies of insects (d,e,f).

(a)

(b)

(c)

(d)

(e)

Figure 6. Registration tasks from ”Paleo-, Archeo- & Anthropol-

ogy” category. Sourced from various introspective studies of cul-

tural artifacts (a,b), fossils (c,d), and lab samples (e).
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