
A. Proof of Lemma 3.1
Proof.

P (f(x,Y) = yi | x 2 OOD) =
P (x 2 OOD | f(x,Y) = yi)P(f(x,Y) = yi)

P(x 2 OOD)
/ P(f(x,Y) = yi).

B. Additional Evaluations
B.1. Hard OOD Tasks

We evaluate CLIPScope on hard OOD tasks. The results are shown in Table 3. Our approach shows performance compa-
rable to NegLabel.

Table 3. Comparisons on hard OOD tasks. In each case, ID dataset is shown in the top, whereas OOD dataset is shown in the bottom. N/A
represents that the corresponding results are not provided in the original paper.

CLIPScope NegLabel
AUROC FPR95 AUROC FPR95

ImageNet-10 98.41 7 98.86 5.1ImageNet-20
ImageNet-10 98.89 2 99.51 1.68ImageNet-100
ImageNet-20 98.42 6.8 98.81 4.6ImageNet-10
ImageNet-20 97.43 11.98 N/A N/AImageNet-100
ImageNet-100 92.11 25.8 90.19 40.2ImageNet-10
ImageNet-100 89.83 27.6 N/A N/AImageNet-20

B.2. FPR95 for Tests in Fig. 3

Figure 4. FPR95 (%) on domain-shifted ID datasets. A lower FPR95 implies a better performance.

B.3. Small ID Datasets
We conducted further experiments with smaller ID datasets. The results are shown in Fig. 5. Our approach consistently

maintained its effectiveness across these smaller datasets. Specifically, Table 4 presents the FPR95 and AUROC values
corresponding to Fig. 5. Our approach maintains consistently high AUROC across all small ID datasets. The lower FPR95
values observed in CUB-200, Oxford-Pet, and Food-101 can be attributed to their focus on fine-grained categories (e.g.,
specific bird species, pet breeds, or food types). These datasets contain highly specific and detailed visual features within
each class, distinguishing them from OOD datasets. For ImageNet-10, ImageNet-20, and ImageNet-100 as ID datasets, the



average FPR95 ranges from 5% to 9%. While still relatively low, this slight performance drop can be attributed to their
diverse classes with limited images per class. The results show the ability of our approach to deliver reliable OOD detection
performance regardless of the ID dataset size.

Figure 5. Performance (in %) of CLIPScope when applied to small ID datasets. The OOD datasets include iNaturalist, SUN, Places, and
Textures. The reported numbers represent average results across these four OOD datasets.

Table 4. Performance of CLIPScope on each small ID dataset.

OOD Dataset iNaturalist SUN Places Textures Average

Small ID Datasets AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#
ImageNet-10 99.85 0.64 97.84 10.63 96.33 18.80 98.62 5.81 98.159 8.965
ImageNet-20 99.90 0.42 98.74 7.24 97.84 10.96 98.69 4.07 98.789 5.671
ImageNet-100 99.67 1.28 98.66 5.65 97.44 10.64 97.55 9.37 98.329 6.734
CUB-200 99.78 0.65 99.68 0.87 99.23 2.56 99.67 1.11 99.589 1.294
Oxford-Pet 99.99 0.02 99.97 0.04 99.88 0.36 99.85 0.33 99.923 0.185
Food-101 99.97 0.11 99.83 0.61 99.63 1.40 97.26 6.91 99.169 2.255

B.4. Robustness Against Mining Parameters M and ⌘

We assessed CLIPScope across various sizes M of OOD label space and percentile distances ⌘. To mitigate the effects of
randomness, we employed a reversing order. The findings are detailed in Table 5. M and ⌘ exert only a mild influence on
our approach since only p2 utilizes OOD labels.

B.5. Convergence
We conducted a series of experiments by varying the numbers of OOD samples to assess the impact on performance

stability. The ratio of ID to OOD samples is maintained at 1:1. The results are shown in the first two subplots of Fig. 6
and Table 6. These numbers indicate that our approach reaches a performance plateau after processing approximately 1200
OOD samples, which is about 12% of the total OOD samples included in our test sets. Similarly, we conducted experiments
to explore how varying proportions affect our approach’s efficacy. We fix the number of OOD samples at 1600 and vary
the number of ID samples. The results are shown in the last two subplots of Fig. 6 and Table 7. Our methodology shows
performance plateaus at 2000 samples in this case.

B.6. Performance of CLIPScope with Various Backbones
We also evaluated the performance of CLIPScope using different backbones. Fig.7 shows the results. Compared to

NegLabel, CLIPScope consistently exhibits comparable or superior performance across most of the tested models. This
diverse set of model evaluations demonstrates that CLIPScope is adaptable to different architectural frameworks.

B.7. Performance on Unbalanced Datasets
Table 8 presents the performance of CLIPScope on subsets of ImageNet, using ImageNet-1K as the ID labels. This

setup creates an unbalanced class distribution, with some in-distribution classes having no samples. Our approach shows a



Table 5. Performance (%) of CLIPScope with various M (the top table) and ⌘ (the bottom table). The ID dataset is ImageNet-1k.

OOD Dataset iNaturalist SUN Places Textures Average

Metric AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#

Different Sizes M of OOD Label Space Y
� (Nearest & Farthest)

M = 0 97.98 8.23 95.79 18.38 91.81 30.68 92.36 31.52 94.488 22.204
M = 50 98.41 5.28 96.63 15.48 93.03 27.48 93.55 27.26 95.405 18.875
M = 100 98.68 4.87 96.7 15.23 93.19 27.23 93.69 26.93 95.565 18.565
M = 500 99.29 2.27 97.06 13.55 93.70 25.57 93.81 28.58 95.965 17.493
M = 1000 99.45 1.52 97.12 13.64 93.85 25.43 93.65 30.3 96.018 17.723
M = 2000 99.53 1.35 97.25 13.76 94.1 25.54 93.44 32.09 96.080 18.185
M = 5000 99.60 1.28 97.34 13.52 94.20 26.32 93.04 34.41 96.045 18.883
M = 7000 99.60 1.21 97.41 12.91 94.27 26.14 92.85 35.12 96.033 18.845
M = 10000 99.60 1.23 97.47 12.83 94.3 25.69 92.91 34.23 96.070 18.495

Different Percentile Distance ⌘
⌘ = 0.001 99.49 1.68 97.10 12.25 95.12 21.12 92.90 31.39 96.153 16.610
⌘ = 0.05 99.60 1.28 97.34 13.52 94.20 26.32 93.04 34.41 96.045 18.883
⌘ = 0.25 99.52 1.56 96.92 13.68 94.75 23.06 92.55 32.56 95.935 17.715
⌘ = 0.5 99.51 1.52 96.94 13.37 94.80 22.93 92.56 32.68 95.953 17.625
⌘ = 0.75 99.58 1.3 97.31 13.51 94.19 26.41 93.24 33.70 96.080 18.730
⌘ = 0.95 99.39 2.03 97.52 11.77 94.36 24.87 93.33 31.64 96.150 17.578
⌘ = 0.999 99.27 2.91 97.57 11.02 93.97 25.56 92.95 32.5 95.940 17.998

Figure 6. Performance (%) of CLIPScope across different quantities of OOD samples (top), and varying ratios of ID to OOD samples
(bottom). The ID dataset is ImageNet-1k. The OOD datasets include iNaturalist, SUN, Places, and Textures. The figures presented are the
average results from these four cases.

Table 6. Performance of CLIPScope on each small ID dataset. Each case contains 50% ID samples and 50% OOD samples.

OOD Dataset iNaturalist SUN Places Textures Average

# Samples AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#
200 99.02 4 93.91 30 90.3 39 95.33 29 94.640 25.500
400 99.35 3.5 94.9 26.5 90.9 38.5 96.19 21 95.335 22.375
800 99.16 3.75 95.06 22 94.16 24.75 92.07 44.25 95.113 23.688
1600 99.33 2.5 96.63 16.37 94.56 25.25 91.63 43.5 95.538 21.905
2400 99.42 1.66 96.96 15.08 94.58 23 92.83 33.58 95.948 18.330
3200 99.44 1.5 96.98 13.75 94.98 24.75 92.90 34.68 96.075 18.670
6400 99.52 1.34 97.30 13 95.12 23.53 93.32 33.21 96.315 17.770
12800 99.55 1.23 97.43 12.68 94.34 26.73 93.15 35 96.118 18.910

slight decrease in AUROC and an increase in FPR95 in most cases due to this imbalance. As discussed in the limitations
section, potential misleading information, such as providing redundant ID labels, could negatively impact detection accuracy.
However, as shown in Table 4, our approach is effective if the ID labels are correctly provided.



Table 7. Performance of CLIPScope on various ID/OOD ratios. The number of OOD samples is fixed at 1600.

OOD Dataset iNaturalist SUN Places Textures Average

# ID / # OOD AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#
1/8 99.19 23.12 96.95 11.5 95.06 22.37 93.38 32.5 96.145 22.373
1/4 99.20 1.93 96.77 13.37 94.83 24.37 93.23 35.06 96.008 18.683
1/2 99.43 1.87 96.97 14 95.15 22.75 93.07 35.68 96.155 18.575
1/1 99.44 1.5 96.98 13.75 94.98 24.75 92.90 34.68 96.075 18.670
2/1 99.46 1.5 97.06 14.62 95.06 22.87 92.91 32.93 96.123 17.980
4/1 99.49 1.5 97.01 14 94.95 23.56 92.71 33.43 96.040 18.123
8/1 99.53 1.5 97.01 13.43 94.85 22.75 92.57 33.18 95.990 17.715

Figure 7. Performance (%) of CLIPScope with various backbones. The ID dataset is ImageNet-1k.

Table 8. Performance of CLIPScope on unbalanced ID datasets.

OOD Dataset iNaturalist SUN Places Textures Average

ID Datasets AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#
ImageNet-1K 99.60 1.28 97.34 13.52 94.20 26.32 93.04 34.41 96.045 18.883
ImageNet-10 98.98 5.11 97.41 9.66 92.46 23.39 90.82 32.34 94.918 17.625
ImageNet-20 99.61 1.50 96.43 15.01 90.90 33.41 88.67 38.63 93.903 22.138
ImageNet-100 99.35 2.14 95.75 17.15 90.70 31.34 87.46 44.02 93.315 23.663

C. Further Discussions
C.1. Computation Complexity

The computational complexity of CLIPScope is O(2MD) per image, where M is the number of negative labels and D is
the dimension of the embedding feature. This complexity is the same as NegLabel’s. Both methods use around 10,000 OOD
labels and CLIP as the feature extractor, resulting in an efficient OOD detection time of about 1ms per sample. The mining
algorithm, which processes large corpora like WordNet, takes only a few minutes on a single GPU machine and is performed
before the inference phase, not affecting the inference speed. Importantly, CLIPScope calculates the confidence score for
each input instance only once, eliminating the need for repeated scoring and improving computational efficiency.

C.2. Overlap Between Mined and Actual OOD Labels
Our OOD label mining strategy does not assume access to OOD test data, ensuring an unbiased selection of OOD labels

without prior knowledge of the test data’s OOD classes. This approach is similar to NegLabel’s. Any overlap between the



Figure 8. The logarithm confidence scores log p of ID (blue) and OOD (yellow) samples. The ID dataset is ImageNet-1k.

Figure 9. The classification behavior of CLIP on ID dataset is different from the classification behavior on OOD datasets.

mined OOD labels and the actual OOD classes in the test data highlights the effectiveness of our mining strategy rather
than being a drawback. NegLabel has previously justified using a wide range of concepts, potentially including the semantic
labels of OOD samples, as a reasonable approach. This justification holds, especially when the corpus is large, similar to
how vision-language models (VLMs) are considered suitable for evaluation in zero-shot tasks despite potential exposure to
task-relevant data. When developers have specific insights into likely OOD labels, these can be intentionally included in the
negative label space to further improve OOD detection effectiveness. Furthermore, Table 5 demonstrates that our approach
remains effective even with a small number of M (e.g., 0, 50, or 100). For smaller values of M , the mined OOD labels are
less likely to overlap with actual OOD labels.

C.3. ID Instances Classified into High Likelihood Classes
ID instances that are classified into classes with high likelihood are influenced by the elevated class likelihood values.

This effect is reflected in their confidence scores. Despite this influence, the confidence scores of these ID instances are still
likely to surpass the threshold because the numerator of their confidence scores is usually high. Indeed, Fig. 8 shows the
logarithm confidence scores log p of ID and OOD samples for different datasets. Most ID instances have higher scores than
OOD instances even in the high likelihood classes. Fig. 9 shows which classes have the highest likelihood.

The p0 in Fig. 9 for each dataset D is calculated as follows:

p0(yi) =
1

|D|

X

x2D

1(f(x,Y) = yi) 8yi 2 Y (7)

where Y is the ImageNet-1K labels. Given the ID dataset DI and the OOD dataset DO, we have

P(x 2 OOD | f(x,Y) = yi) =

P
x2DO

1(f(x,Y) = yi)P
x2DO

1(f(x,Y) = yi) +
P

x2DI
1(f(x,Y) = yi)

. (8)

Based on Fig. 9, P(x 2 OOD | f(x,Y) = yi) varies significantly between classes. However, CLIPScope provides very good
performance in this general case, as evidenced by the results shown in Table 1.

C.4. Training-Based Methods
Training-based or tuning-based methods may improve their performance by using historical test samples. However, com-

pared to training-based methods, our approach does not rely on ground-truth labels from historical test data and offers
substantial advantages in terms of efficiency. It requires minimal memory, as it uses only histogram information based on the
empirical output of CLIP rather than ground-truth labels, and it has faster computation compared to fine-tuning models with
numerous parameters. These benefits make our method more practical for applications requiring frequent updates.



C.5. Broader Impact
This paper presents work whose goal is to advance the field of machine learning. It demonstrates a positive impact in the

realm of zero-shot OOD detection by leveraging posterior information from historical instances. This approach has shown
a considerable improvement in detection accuracy, setting a precedent for other OOD detection methods. The integration of
posterior information into confidence score calculations could potentially enhance the performance of various OOD detection
models, not limited to zero-shot approaches. However, the potential misleading information within the historical data could
adversely affect detection accuracy, compromising the reliability of open-world deployed machine learning systems.

C.6. Future Works
While CLIPScope currently utilizes only class likelihood as its form of posterior information, future explorations could

delve into other types of posterior data. This expansion could uncover new dimensions of accuracy and efficiency in OOD
detection. Furthermore, the development of new OOD detection scores remains a valuable and promising avenue of research.
It would be interesting to investigate how existing OOD detectors could benefit from the incorporation of CLIPScope’s
approach to using posterior information.


