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1. Additional discussions on related work
In this section, we provide more detailed discussions of

related works on adversarial patch attacks and diffusion-
based adversarial defenses.

1.1. Adversarial patch attacks

Since Szegedy et al. [10] revealed the adversarial vul-
nerabilities of neural networks, where normal inputs crafted
with imperceptible perturbations can induce erroneous pre-
dictions, numerous attack algorithms [1, 3, 4] have been
proposed to study the model behavior in the presence of
adversarial examples. However, most existing works fo-
cused on global attacks defined by some `p-norm, thereby
not directly applicable to threatening real-world systems.
Brown et al. [2] first introduced the concept of adversar-
ial patches, where the adversary is only allowed to manipu-
late a small region of an image to launch the evasion attack.
Subsequently, LaVAN [6] enhanced the design of the loss
function, enabling the adversarial patch to cover only 2%
of the given image. Meanwhile, GDPA [13] improved the
attack strategy by adversarially refining the patch’s location
rather than positioning it randomly. These research efforts
lay the foundation for realizing adversarial patches in the
physical world. For example, an adversarial patch printed
on a T-shirt [14] can succeed in evading human detectors,
while Wei et al. [12] proposed adversarial stickers, which
feature meaningful patterns and achieve good performance
in both digital and physical realms.

1.2. Diffusion-based adversarial defenses

We further discuss the limitations of existing diffusion-
based adversarial defenses, including DiffPure and DIFF-
ender. DiffPure [8] has proved that forward diffusion dis-
rupts the distribution of both clean data and adversarial
perturbations. During the reverse diffusion process, clean
data can be stochastically recovered, while adversarial ef-
fects are progressively eliminated. This process can be ex-
ecuted using the standard DDPM framework. Necessarily,

to preserve the label semantics of the image, DiffPure halts
the diffusion at a specific timestep t∗ ∈ (0, T ) then com-
mences the reverse diffusion from xt∗ back to x0. DIFF-
ender [5] identified a critical limitation of DiffPure in ad-
versarial patch defense. DiffPure struggles to completely
remove the adversarial patch, which requires a larger t∗,
whereas a smaller t∗ is essential for maintaining image se-
mantics. Alternatively, DIFFender retains image semantics
with the aid of additional prompts and fine-tunes a text-
guided diffusion model for patch localization and restora-
tion. However, prompt learning introduces new challenges,
as well as limited prior contained within the text prompts
renders DIFFender less efficient, necessitating the genera-
tion of at least three samples per image to ensure robust
patch localization.

2. Proof of Theorem 1
For the sake of completeness, we provide detailed proof

of our main theoretical result presented in Section 4.2. Our
proof technique mainly follows from the proof of Theorem
3.2 in [8]. Below, we first restate the problem statement of
Theorem 1 that we are going to prove.

Theorem 1 Assume ‖εθ (xt) ‖ ≤ Cε
√

1− ᾱt and let γ :=∫ T
0
βtdt. With probability at least 1 − ξ, the `2 distance

between the diffusion-purified image x̂a with adversarial
patch and the corresponding clean image xc satisfies:

‖x̂a − xc‖ ≤ ε |A|+ γCε +
√
eγ − 1 · Cξ, (12)

where ε is the `2-norm bound of the patch, Cξ :=√
2d+ 4

√
d log 1

ξ + 4 log 1
ξ , and d is the input dimension.

Proof: For variance preserving SDE, given the adversarial
example xa defined in Equation 8, after the forward diffu-
sion process, we have

xT =
√
αT · xa +

√
1− αT · ε′, (15)



where αT = e−
∫ T
0
βtdt and ε′ ∼ N (0, Id). As diffusion-

restored adversarial example x̂a does not have a closed-
form solution, we apply an SDE solver with the Eu-
ler–Maruyama discretization, where the drift and diffusion
coefficients of the reverse-time SDE are given by:

frev(x, t) := −1

2
βt [x+ 2sθ(xt)] ,

grev(t) :=
√
βt,

(16)

where sθ(xt) denotes the score function. The `2 distance
between x̂a and the corresponding clean data xc can be
bounded as:

‖x̂a − xc‖ =
∥∥xT +

(
x̂a − xT

)
− xc

∥∥
= ‖xT +

∫ 0

T

−1

2
βt [x+ 2sθ(xt)] dt+

∫ 0

T

√
βtdw − xc‖

≤ ‖xT +

∫ 0

T

−1

2
βtxdt+

∫ 0

T

√
βtdw︸ ︷︷ ︸

Integration of linear SDE

−xc‖

+ ‖
∫ 0

T

−βtsθ(xt)dt‖,
(17)

where the second equation is obtained by using the integra-
tion of the reverse-time SDE, and the last line is derived by
separating the integration of the linear SDE from non-linear
SDE involving sθ(xt) through the triangle inequality.

Notice that the above linear SDE is a time-varying Orn-
stein–Uhlenbeck process, where the time increment in-
versely starts from T to 0 with the initial value xT . Denote
its solution by x′ that follows a Gaussian distribution, the
mean µ0 and covariance matrix Σ0 of x′ will be the solu-
tions of the following two differential equations:

dµ

dt
= −1

2
βtµ,

dΣ

dt
= −βtΣ + βtId,

(18)

with the initial conditions µT = xT and ΣT = 0. By
solving these two differential equations, we have x′ ∼
N
(
e
γ
2 xT , (e

γ − 1) Id
)

that is conditioned on xT , where
γ :=

∫ T
0
βtdt. Taking the advantage of reparameterization

trick, we obtain

x′ − xc

= e
γ
2 xT +

√
eγ − 1 · ε′′ − xc

= e
γ
2

(
e−

γ
2 xa +

√
1− e−γ · ε′

)
+
√
eγ − 1 · ε′′ − xc

=
√
eγ − 1 · (ε′ + ε′′) + xa − xc,

(19)
where the second equation follows by substituting Equation
15. Since ε′′ ∼ N (0, Id) and ε′ ⊥ ε′′, the first term of

the last line in Equation 19 can be combined as a zero-mean
Normal variable with variance 2 (eγ − 1).

We know the connection between the score function and
the noise prediction εθ(xt) in DDPM can be formulated as:

sθ(xt) = − εθ(xt)√
1− ᾱt

. (20)

Assuming that the `2-norm of εθ(xt) is upper-bounded by
Cε
√

1− ᾱt. In other words, we assume that the `2-norm of
sθ(xt) is upper-bounded by constant Cε. Hence,

‖x̂a − xc‖ ≤ ‖
√

2 (eγ − 1) · ε+ xa − xc‖+ γCε

≤ ‖xa − xc‖+ γCε +
√

2 (eγ − 1) · ‖ε‖,
(21)

where ε ∼ N (0, Id). We denote the `2-norm bound of the
pixels in adversarial patch region as ε, since xa − xc =
A � (δδδ − xc), we can obtain ‖xa − xc‖ ≤ ε |A|, where
|A| represents the pixel number, i.e., the size of adversarial
patch. Furthermore, ‖ε‖2 ∼ χ2(d), from the concentration
inequality, we attain

Pr
(
‖ε‖2 ≥ d+ 2

√
dσ + 2σ

)
≤ e−σ. (22)

Let e−σ = ξ, we get

Pr

‖ε‖ ≥
√
d+ 2

√
d log

1

ξ
+ 2 log

1

ξ

 ≤ ξ. (23)

Finally, at least of the probability 1− ξ, we have

‖x̂a − xc‖ ≤ ε |A|+ γCε +
√
eγ − 1 · Cξ, (24)

where constant Cξ :=

√
2d+ 4

√
d log 1

ξ + 4 log 1
ξ , which

completes the proof of Theorem 1.

3. Experimental details
3.1. Hyperparameter setup

All our experiments are conducted in Pytorch on four
Nvidia A100 GPUs. We set µ = 0.066 and ν = 14.90
in Equation 14, which is determined using grid search. In
practice, to reduce the redundant computations, the thresh-
old τ ′ is fixed as 9. We treat input images with diffusion
restoration errors less than 62 as clean images to prevent ex-
cess defense. We run 20 NFEs for both super-resolution and
inpainting restoration. Noise level σ = 0.001 and scaling
factor s = 4 are hyperparameters in close-form solutions
(Equation 10, 11). Additionally, we repeat three rounds
of each experiment related to DiffPAD and report averaged
statistics, due to the stochasticity of diffusion processes. In
the evaluation phase, we adopt the same subset of the orig-
inal ImageNet validation set as [9], which contains 1000
images covering all categories. For a fair comparison with
DIFFender, we randomly choose 512 images from this sub-
set which can be correctly classified before the attacks.



Figure 1. Examples of clean images where DiffPAD spuriously
detects an adversarial patch of small size (marked by the red box).

Table 1. Comparisons of robust accuracies (%) against global at-
tacks on ImageNet with Inception-V3. The best (blue) and second-
best (red) results are highlighted. PAD stands for patch detection.

Defense
Attack

FGSM PGD C&W

w/o defense 14.3 0.2 0.1
JPG 27.6 10.6 34.9
SAC 19.6 2.8 4.0
Jedi 25.9 5.6 22.5
DiffPure 64.4 64.6 65.8

DiffPAD w/o PAD 50.3 51.1 53.3

3.2. False positive of patch detection

Figure 1 visualizes how clean images appear when pro-
cessed with DiffPAD. We can see that the estimated patches
are quite small. The inpainting is competent in recovering
an image almost identical to its original version, thereby
avoiding excessive defense and ensuring the recognition
performance remains unaffected on the clean dataset. This
is also confirmed by the clean accuracies of DiffPAD, which
is always the highest compared to the other defenses.

3.3. Computational complexity

For each image resized to 256×256, SAC [7] costs 0.27s,
Jedi [11] costs 0.32s, DiffPAD costs 2.45s, and DiffPure
costs 8.59s, on average.

4. Generalizability to global attacks

Although DiffPAD targets localized patch attacks,
the proposed diffusion-based resolution degradation-
restoration mechanism can serve as a handy tool to miti-
gate `p-norm bounded perturbations. Table 1 compares the
robust accuracies of DiffPAD with other baselines used in
the main paper against FGSM [4], PGD [1], and C&W [3]
attacks. The trivial image transformation and other patch
defenses demonstrate limited effectiveness, far less than the
SOTA model DiffPure in such attack settings. However,
DiffPAD (40 NFEs) is second only to DiffPure and achieves
80% of its performance, taking only 30% of its runtime.
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